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1 Complete Neural Circuit

Supplementary Figure 1 shows the complete circuit for complex behavior
generation. It consists of sensory processing, modular neural locomotion con-
trol, and muscle models. It receives sensory signals and processes them through
sensory processing modules. The processed sensory signals are transmitted to
a modular neural locomotion control network consisting of three main mecha-
nisms: Central pattern generator(CPG)-based control (modules I-IV), local leg
control (modules V-VI), and backbone joint control (module VII). The locomo-
tion control network basically coordinates all leg and body joints and generates
their movements through muscle models which allow for compliance Xiong
et al. (2014). It also at the same time uses the processed sensory signals to
adapt the movements to deal with cluttered unknown environments and uneven
terrains.

Module I (CPG with neuromodulation): MI = modulatory input;
C1,2 = output neurons of the CPG. We use a hyperbolic tangent (tanh) transfer
function for the CPG neurons.

Module II (neural CPG postprocessing): CP1,2 = postprocessing neu-
rons with a step function; Int1,2 = integrator units.

Module III (neural motor control): I1,...,4 = neural control parameters
for generating different walking directions and stopping motion; H1,...,14 = in-
terneurons of the phase switching network (PSN); H15,...,28 = interneurons of
the velocity regulating networks (VRNs). We use a tanh transfer function for
the interneurons. Parameters are A = 1.7246, B = −2.48285, C = −1.7246.

Module IV (motor neurons): M1,...,5 = premotor neurons; TR1, CR1, FR1

= TC-, CTr- and FTi-motor neurons of the right front leg (R1); TR2, CR2, FR2

= right middle leg (R2); TR3, CR3, FR3 = right hind leg (R3); TL1, CL1, FL1

= left front leg (L1); TL2, CL2, FL2 = left middle leg (L2); TL3, CL3, FL3 =
left hind leg (L3); BJ = a backbone motor neuron which is controlled by the
backbone joint control (module VII); τ = ipsilateral lag (i.e., 16 time steps or
≈ 0.6 s); τL = the phase shift between both left and right sides (i.e., 48 time
steps or ≈ 2 s). We use piecewise linear transfer functions for the premotor and
motor neurons.

Module V (adaptive neural forward models): F1,...,6 = adaptive hys-
teresis neurons for motor signal transformation; WI ,WR, B = learning param-
eters; P1,...,6 = postprocessing neurons; ∆ = an error between the expected
foot contact signal and the actual one. We use a tanh transfer function for the
hysteresis and postprocessing neurons.

Module VI (searching and elevation control): PD1,...,6 = preprocess-
ing neurons which provide only a positive error (+∆); ND1,...,6 = preprocessing
neurons which provide only a negative error (−∆); E1,...,6 = S1,...,6 = recurrent
neurons (i.e., accumulators). We use piecewise linear transfer functions for the
preprocessing neurons and use a linear transfer function for the recurrent neu-
rons.

Module VII (backbone joint control): BJ1,...,6 = five input neurons
and one hidden neuron with a linear threshold transfer function. BJ7 = output
neuron of the backbone joint control.

Note that in all modules, all numbers are synaptic weights and the ones
marked with subscript “B” refer to fixed bias terms (see Manoonpong et al.
(2013); Goldschmidt et al. (2014) for details of all these modules).
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Supplementary Figure 1: Complete circuit for the versatile and adap-
tive behaviors of the biomechanical walking robot AMOSII (see text
for details).

Different exteroceptive and proprioceptive sensors can be used as inputs to
the controller to generate stimulus induced behavior and adaptive locomotion.
The sensors are: one USB camera (CM), one laser range finder (LRF), left and
right ultrasonic sensors (US), six foot contact sensors (FC1,...,6), six infrared
reflex sensors (IR1,...,6). All raw sensory signals are preprocessed using neural
preprocessing except the visual signal and the laser range finder signal which are
done by using an online feature-based terrain classification algorithm Zenker
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et al. (2013) and an obstacle height detection algorithm Kesper et al. (2013),
respectively.

We use two neurons (N1,2) with a tanh transfer function to form the adap-
tive neural processing network of the left and right US signals. The network
outputs provide orienting control signals which are transmitted to I3,4 of the
neural motor control module. As a result, AMOSII can effectively perform an
appropriate turning angle to avoid obstacles, narrow passages, or corners.

We use neurons (N3,...,14) with a tanh transfer function for preprocessing
the FC1,...,6 and IR1,...,6 signals. This is because the sensor signals contain
small noise which can be eliminated by the nonlinearity of the neuron. The
preprocessed sensor signals are used for local leg control Manoonpong et al.
(2013).

The muscle models consists of a pair of agonist and antagonist mechanisms
(also called virtual agonistantagonist mechanism (VAAM)). It produces active
and passive forces using its contractile and parallel elements (CEs and PEs).
Here each joint of AMOSII is driven by a pair of the VAAM. Virtual means
that the joint, physically driven by a standard servo motor, imitates muscle-
like behaviors as if it were driven by a pair of physical agonist and antagonist
muscles. The joint actuation relies on the CEs while the joint compliance is
achieved by the PEs. The CEs are approximated by the neural outputs of
the modular neural locomotion control and the PEs are modeled as spring-
damper systems with stiffness (K) and damper (D) parameters. Changing the
parameters (K, D) enables AMOSII to achieve variable compliant leg motions,
thereby leading to adaptive and energy-efficient walking on different terrains
(not shown here but see Xiong et al. (2014)).

2 Input-output Analysis of the Inhibitory Synapses
of a Recurrent Neural Network

Here, we present the input-output relation for different strengths of inhibition
of a recurrent neural network (see Fig. 2 of the main text). We analyze
the inhibitory influence by setting the excitatory weights to a constant value
(b1 = b2 = 2.4) and varied the input I2 and the inhibitory weight (c1 = c2 ≡ c).
For each of these sets of parameters we changed the first input I1 and measured
the corresponding outputs O1 and O2 (see Supplementary Figure 2).

By varying the input I1, we see that the output O1 passes through a hys-
teresis while O2 is basically uneffected. Changing the second input I2 (columns)
brings the output O2 to a different baseline and the onset of the hysteresis of O1

changes slightly. Now, for increasing the inhibitory weight c (rows) we see that
the onset as well as the width of the hysteresis changes. However, these dynam-
ics could become even more complex (see, for instance, c = −3.5; I2 = 0). Thus,
we expect that adapting inhibition could imply even more complex behaviors
which have to be analyzed in further detail. However, this is beyond the scope
of this manuscript. Here, it is behaviorally important that inhibition uncorre-
lates the output (O2 is uneffect by changes of I1) and that, as for excitatory
plasticity, the parameters of the hysteresis are changed.
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Supplementary Figure 2: Analysis of the input-output relation for
different strengths of inhibition. Parameters: b1 = b2 = 2.4, c1 = c2 = c
(see text for details).

Supplemental Video Legends

Supplementary Video 1: Comparison of escape behavior of AMOSII
from a narrow passage using the non-adaptive and adaptive networks.
AMOSII got stuck and failed to escape from the narrow passage when the non-
adaptive network was used while it can successfully escape from the situation
when the adaptive network was used.
(http://manoonpong.com/Frontiers/2015/SupplementaryVideo1.wmv)

Supplementary Video 2: Comparison of navigation of AMOSII in a com-
plex path using the non-adaptive and adaptive networks. AMOSII got
stuck in the path when the non-adaptive network was used while it performed
successful navigation when the adaptive network was used.
(http://manoonpong.com/Frontiers/2015/SupplementaryVideo2.wmv)

Supplementary Video 3: Versatile behavior of AMOSII in a complex en-
vironment. AMOSII can autonomously walk, climb up steps, and avoid a wall
in the complex environment.
(http://manoonpong.com/Frontiers/2015/SupplementaryVideo3.wmv)

4



References

Goldschmidt, D., Wörgötter, F., and Manoonpong, P. (2014), Biologically-
inspired adaptive obstacle negotiation behavior of hexapod robots, Front.
Neurorobot., 8, 3, doi: 10.3389/fnbot.2014.00003

Kesper, P., Grinke, E., Hesse, F., Wörgötter, F., and Manoonpong, P. (2013),
Obstacle/gap detection and terrain classification of walking robots based on a
2d laser range finder, in 16th International Conference on Climbing and Walk-
ing Robots and the Support Technologies for Mobile Machines (CLAWAR),
419–426

Manoonpong, P., Parlitz, U., and Wörgötter, F. (2013), Neural control and
adaptive neural forward models for insect-like, energy-efficient, and adapt-
able locomotion of walking machines, Frontiers in neural circuits, 7, 12, doi:
10.3389/fncir.2013.00012

Xiong, X., Wörgötter, F., and Manoonpong, P. (2014), Virtual agonist-
antagonist mechanisms produce biological muscle-like functions: An appli-
cation for robot joint control, Industrial Robot: An International Journal, 41,
4, 340–346

Zenker, S., Aksoy, E. E., Goldschmidt, D., Worgotter, F., and Manoon-
pong, P. (2013), Visual terrain classification for selecting energy efficient
gaits of a hexapod robot, in Advanced Intelligent Mechatronics (AIM), 2013
IEEE/ASME International Conference on (IEEE), 577–584

5


