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Abstract: The specialized hairs and slit sensillae of spiders (Cupiennius salei) can sense the airflow and auditory 
signals in a low-frequency range. They provide the sensor information for reactive behavior, like e.g. capturing a prey. 
In analogy, in this paper a setup is described where two microphones and a neural preprocessing system together with 
a modular neural controller are used to generate a sound tropism of a four-legged walking machine.  The neural 
preprocessing network is acting as a low-pass filter and it is followed by a network which discerns between signals 
coming from the left or the right. The parameters of these networks are optimized by an evolutionary algorithm. In 
addition, a simple modular neural controller then generates the desired different walking patterns such that the 
machine walks straight, then turns towards a switched-on sound source, and then stops near to it.  
Keywords: recurrent neural networks, neural control, auditory signal processing, autonomous robots, walking 
machines  

1. Introduction  
 
Sensors and sensing are significant for specific behaviors 
or actions of an animal. For instance, the wandering 
spider (Cupiennius salei) preys on a flying insect by 
using the special sensory hair (Trichobothria) (Barth, 
F.G., 2002), (Keil, T., 1997), (Uetz, G.W. & Roberts, 
J.A., 2002) on its limbs to detect the airflow and the 
auditory cues in a low-frequency range between 
approximately 40 and 600 Hz (Barth, F.G. & Geethabali, 
1982), (Barth, F.G. & Wastl, U. & Humphrey, J.A.C. & 
Devarakonda, R., 1993). It orients its movement towards 
the direction of the signal and then jumps to the targeted 
buzzing fly. This is known as “prey capture behavior” 
(Barth, F.G. & Humphrey, J.A.C. & Secomb, T.W., 
2003), (Hergenröder, R. & Barth, F.G., 1983). 
To observe the functioning of a corresponding artificial 
perception-action system in robots we simply replace the 
puff of the wind; normally generated by the buzzing fly, 
by a low-frequency sound around 200 Hz. A sound-
induced behavior is called “sound tropism”, if, as a 
result, the walking machine reacts to a switched-on 

sound source by turning towards and making an 
approach at the end.  
There are several examples of experiments with robots 
that use auditory signal processing and sound 
localization. Most of the research focuses on the cross-
correlation technique (Briechle, K. & Hanebeck, U.D., 
1999), (Omologo, M. & Svaizer, P., 1994) to perform 
auditory source localization by using an array of four or 
more microphones (Aarabi, P. & Wang, Q.H. & 
Yeganegi, M., 2004), (Murray, J. & Erwin, H. & 
Wermter, S., 2004), (Svaizer, P. & Matassoni, M. & 
Omologo, M., 1997), (Valin, J.M. & Michaud, F. & 
Rouat, J. & Létourneau, D., 2003), (Wang, Q.H. & 
Ivanov, T. & Aarabi, P., 2004). There are other 
examples, for instance, the SAIL robot uses the 
microphone for online learning of verbal commands 
(Zhang, Y. & Weng, J., 2001); and a humanoid robot 
called ROBITA, which uses two microphones to follow a 
conversation between two persons (Matsusaka, Y. & 
Kubota, S. & Tojo, T. & Furukawa, K. & Kobayashi, T., 
1999). In addition, principle engineering techniques, e.g. 
a Fast Fourier Transformation or diverse filter techniques 
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(Coulter, D., 2000), including specialized digital signal 
processors (DSP) are frequently used to analyze the 
auditory data. Often these methods are too slow to 
generate a reactive action of machines, too complex, and 
too expensive to achieve the optimal performance. 
However, in other articles from the domain of 
biologically inspired robotics the behavior generated by 
auditory signals is studied (Horchler, A. & Reeve, R. & 
Webb, B. & Quinn, R., 2003), (Reeve, R. & Webb, B., 
2003), (Webb, B. & Harrison, R., 2000), (Webb, B. & 
Scutt, T., 2000). They implemented neural models of 
sound localization for robot phonotaxis allowing the 
robot to detect and move towards a simulated male 
cricket song-4.8 kHz (Lund, H. H. & Webb, B. & 
Hallam, J., 1998), (Michelsen, A. & Popov, A.V. & 
Lewis, B., 1994). 
Inspired by the described behavior of  the spider 
Cupiennius salei, we apply the neural network for 
auditory signal processing described in (Manoonpong, P. 
& Pasemann, F. & Fischer, J., 2004) which has been 
developed to operate in a low-frequency range up to 
around 300 Hz. Here, this so-called “advanced auditory 
network” is implemented together with the auditory 
sensor system on the four-legged walking machine 
AMOS-WD02. In addition, this setup is combined with a 
so-called “sound-direction detection network” which 
detects the direction of the sound source. 
Both networks are developed and optimized via an 
evolutionary algorithm. Together with the modular 
neural controller, this will enable the autonomous 
walking machine to react on the specific auditory signal, 
and to move in the direction of the sound source in a real 
environment. 
The paper is organized as follows. Section 2 describes 
the perception-action system which generates the sound 
tropism. Section 3 explains the simple neural network for 
preprocessing the sensor signals. It performs as a low-
pass filter and at the same time is able to discern between 
directions of the sound source. For that, time delay of 
arrival (TDOA) of signals coming from auditory sensors 
based on the fore left and rear right legs is used. In 
section 4, a modular neural controller is introduced. This 
controller generates the walking pattern and executes 
sound tropism. Experiments and their results are 
discussed in section 5. Conclusions and an outlook on 
future works are given in the last section.  
 
2. The perception-action system 
 
Describing the machine together with its behavior as a 
perception-action system, one can identify four different 
parts (compare Fig. 1).  
First, there are two microphones acting as auditory 
sensors in analogy to the hairs of the spiders.  Second, 
there is the network preprocessing the auditory signals. 
Then, there is the modular neural network controlling the 
behavior of the walking machine. Finally, we have to 
take into account the physical properties of the machine.  

 
 
Fig. 1. The perception-action system. 
 
2.1. An auditory sensor system 
 
The auditory sensor system consists of two miniature 
microphones (0.6 cm diameter) installed on the (moving) 
fore left and rear right legs of the walking machine. They 
have a separation of 42 cm (see Fig. 2). 
 
 

 
 
Fig. 2.  The auditory sensor system. (A) The distance 
between two sensors is equal to 42 cm. (B) One real 
sensor built in a preamplifier circuit is installed on the 
fore left leg of the walking machine. 
 
Consequently, these sensors can scan the auditory signals 
in the wider angle because they are moving with the legs. 
The signals are amplified via the microphones’ integrated 
amplifier circuit, and then scaled to the range between 0 
and 5 V by an extra electronic circuit board. Afterwards, 
they are sampled via analog to digital converter (ADC) 
channels of the Multi-Servo IO-Board (MBoard)1.  
                                                            
1For more details see 
http://www.ais.fraunhofer.de/BE/volksbot/mboard.htm 
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2.2. The walking machine AMOS-WD02  
 
To explore the performance of the auditory sensor 
system in a real environment, a robot platform is 
required, and because of the biologically inspired 
approach we prefer a morphology which is similar to that 
of walking animals.  
Inspired by the morphology of the reptiles’ trunk and its 
motion, we design the four-legged walking machine 
AMOS-WD02 with a backbone joint at the trunk, which 
facilitates more flexible and faster motion. The trunk is 
composed of the backbone joint which can rotate 
vertically, four identical legs, each with two degrees of 
freedom, and an active tail with two degrees of freedom 
rotating in the horizontal and vertical axes (see Fig. 3). 
 

 
 
Fig. 3. The four-legged walking machine AMOS-WD02. 
 
All leg joints are driven by analog servo motors 
producing a torque between 70 and 90 Ncm. The 
backbone joint is driven by a digital servo motor with a 
torque between 200 and 220 Ncm. For the active tail, 
micro-analog servo motors with a torque around 20 Ncm 
are selected. The height of the walking machine is 12 cm 
without its tail. Its weight is approximately 3 kg. On the 
active tail, a mini wireless camera with built in 
microphone is installed for monitoring and observation 
while the machine is walking. All in all AMOS-WD02 
has 11 active degrees of freedom and therefore it can 
serve as a reasonably complex platform for experiments 
concerning the function of a neural perception-action 
system. To have a completely mobile system, a Personal 
Digital Assistant (PDA) is installed on the walking 
machine. It is used for programming the neural 
processing and the neural controller, and for 
communicating with the Multi-Servo IO-Board 
(MBoard) via a RS232 interface. 
 
3. An artificial neural auditory signal processor 
 
The approach to signal processing uses dynamical 
properties of recurrent neural networks. The standard 
additive neuron model with sigmoidal transfer function 
together with its time-discrete dynamics is given by  
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where n denotes the number of units, ai their activities, Bi 

represents a fixed internal bias term together with a 
stationary input to neuron i, and Wij synaptic strength of 
the connection from neuron j to neuron i. The output of 
neurons is given by the sigmoid oi = tanh (ai). Input units 
are configured as linear buffers. 
The desired network as an artificial neural auditory 
signal processor is composed of two subordinate 
networks, one for filtering auditory signals to detect the 
low-frequency sound, and another to distinguish the 
detected signals between the right and the left. Later the 
outputs of this network will activate the corresponding 
reactive behavior of the walking machine. 
 
3.1. A low-pass filter for auditory signals acting in a real 
environment 
 
In order to directly filter the sampled signals from ADC 
channels of the MBoard, the simple model neurons are 
configured as a hysteresis element (Pasemann, F., 
1993a). In (Manoonpong, P. & Pasemann, F. & Fischer, 
J., 2004) it is demonstrated that the network, called 
“advanced auditory network”, behaves similarly to a 
low-pass filter circuit. It passes signals of sine shape in a 
frequency range between 50 and 300 Hz. There, the 
auditory signals were recorded via an artificial auditory-
tactile sensor and the output signal was sampled through 
the line-in port of a sound card at a sampling rate of 48 
kHz. The network ran on a 1 GHz personal computer. 
Here, the auditory signals are sampled via the MBoard at 
a sampling rate of 5.7 kHz, and the network is 
programmed on the PDA. For using on the walking 
machine, the parameters (weights and a bias) of the 
advanced auditory network have to be recalculated. An 
evolutionary algorithm, the ENS3-algorithm (Evolution of 
Neural Systems by Stochastic Synthesis (Hülse, M. & 
Wischmann, S. & Pasemann, F., 2004)), is applied to 
optimize the parameters of this network. The first 
population consists of the fixed network shown in Fig. 
4A, and the evolutionary process is running until a 
reasonable solution is reached. 
The fitness function F which minimizes the square error 
between target and output signals is given by 
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For the ideal case, the maximum value of F should be 10 
while the mean squared error E should be equal to 0. The 
mean squared error E is evaluated by the equation: 
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where N is the maximal number of time steps. In this 
case it is set to N = 6000. The target signal is activated by 
oscillating between +1 and -1 if and only if a low-
frequency signal from 100 to 400 Hz is presented and it 
is -1 in all other cases. This is exemplified in Fig. 4B and 
C. 



 

YY 

 
 
Fig.  4. (A) An initial network structure with given 
weights and a bias. (B) The varying frequencies of an 
input signal from 100 Hz to 1000 Hz coming from a 
physical sensor. (C) A corresponding target signal. 
 
After 55 generations the resulting network had a fitness 
value of F = 8.76, which is sufficient to recognize the 
low-frequency signals. This is shown in Fig. 5. 
This preprocessing network can filter the noises at high 
frequencies (>400 Hz) which might occur from the 
motors of the walking machine during walking and 
standing.  
 
3.2. A sound-direction detection network 
 
To discern the direction of the auditory signals for sound 
tropism, the mentioned ENS3-evolutionary algorithm is 
again applied to find the appropriate neural network 
based on the concept of the time delay of arrival 
(TDOA). According to the dimension of the walking 
machine and the distance between the fore left and rear 
right sensors, the maximum time delay between the left 
and the right is equivalent to one-fourth of the 
wavelength of the carrier frequency which is 200 Hz.    

 
 
Fig. 5. (A) The advanced auditory network which is 
optimized by the evolutionary algorithm. It is able to 
filter the frequency of the auditory signals which is 
higher than 400 Hz. (B) The output signal of the 
network. In the smashed frame, there are auditory signals 
in a low-frequency range approximately between 100 and 
400 Hz. (C) The characteristic curve of this network with 
its cutoff frequency at around 400 Hz. 
 
 
 
To evolve the neural network, the same strategy as 
described before is applied. The initial neural structure is 
now based on the minimal recurrent controller (MRC) 
(Hülse, M. & Pasemann, F., 2002), and its parameters are 
shown in Fig. 6A. This neural structure consists of two 
input and two output neurons. The input signals are 
detected by the left and right sensors and these signals 
are firstly filtered via the advanced auditory network; i.e. 
only noise-free signals at the low frequencies can pass 
through the evolved network. The input signals together 
with the delay of each are shown in Fig. 6B. 
The fitness function  F is determined by equation (2), and 
the squared error E is estimated by 
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N is equal to 3500 referring to the maximal number of 
time steps and i = 1, 2 refers to the signals on the right 
and the left respectively. The target signals are prepared 
in such a way that they refer to recognition of a leading 
signal or to only one active signal. For instance (see Fig. 
6C), Target1 (full line) is set to +1 if  the signal of  
Input1 (I1) leads the signal of Input2 (I2) or only I1 is 
active indicating “the sound source is on the right side” 
and it is set to -1 in all other cases. Correspondingly 
Target2 (smashed line) is set to +1 in the reversed cases 
indicating “the sound source is on the left side”.   
 

 
 
Fig. 6. (A) An initial network structure with given 
weights. (B) The input signals—after filtering via the 
advanced auditory network—at the frequency of 200 Hz 
from the right (full line) and left (smashed line) sensors 
involving a delay between them. (C) Target1 (full line) 
and Target2 (smashed line) corresponding to the 
direction of the signals on the right and the left, 
respectively. 

The network resulting from the evolution after 260 
generations has a fitness value F = 6.96 which is 
sufficient to solve this problem. This sound-direction 
detection network as well as the input and output signals 
are presented in Fig. 7.  
 

 
 
Fig. 7. (A) The resulting network called “sound-direction 
detection network”. (B) The input signals from both 
sensors with the delay between each other. At the first 
period, the sound source is on the right of the walking 
machine while after around 110 time steps it changes to 
the left. (C) During the first period, the signal of  Output1 
is active and the signal of Output2 is inactive while after 
110 time steps the signal of Output1 becomes inactive 
and the signal of Output2 becomes active. 
 
The main feature of this network is its ability to 
distinguish the direction of incoming signals by 
observing a leading signal or solely an active signal. 
Furthermore, it is easy to implement on the mobile 
system because of its uncomplicated structure. 
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In addition, its outputs can directly be connected to the 
neural control module such that it determines the walking 
direction of the machine; e.g. the machine turns left when 
the sound source is on the left side and vice-versa. 
The output neurons of this small network are excited by 
straight and cross connections coming from each of the 
input neurons. There are also excitatory self-connections 
at both output neurons providing hysteresis effects; i.e. 
they allow the switching between two fixed point 
attractors corresponding to stationary output values of the 
output neurons, one low the other high  (see Fig. 8).  
The strength of a self-connection w > +1 determines the 
width of the hysteresis interval in the input space (Hülse, 
M. & Pasemann, F., 2002). However, if the strength of w 
is too large (for instance, the weight at Output1 w1 > 2.0 
and at Output2 w2 > 3.5), then the inputs will not cross 
the hysteresis domains to and fro, and the output signal 
will oscillate around the high output value if the input 
signal is activated. This is demonstrated in Fig. 8 where 
Output2 versus Input2 for smaller self-connection 
weights (w1 = 2.0, w2 = 3.5) and larger self-connection 
weights (w1 = 2.206, w2= 3.872) are plotted.  
 

 
 
Fig. 8. Comparing outputs for different self-connection 
weights at Output1 and Output2 while I2 sweeps over the 
input interval (-1 and +1) and I1 is given by following 
Input2 with a delay. (A) Varying Output2 for smaller 
self-connection weights (w1 = 2.0, w2 = 3.5), and (B) for 
stronger self-connection weights (w1 = 2.206, w2 = 
3.872). Black spots indicate the initial output values, 
which are then following the indicated paths (dot line).  
There is no hysteresis loop in (B) like it is in (A); instead 
it oscillates around the high output value. 

Fig. 8A shows the switching of the output of Output2 
(O2) between almost saturation values (corresponding to 
the fixed point attractors) while I2 varies over the whole 
input interval and I1 is provided with a delay (see Fig. 
9A). O2 in Fig. 8B jumps and then stays oscillating with 
very small amplitude around the high output value. 
Moreover, one can also see this effect in Fig. 9. The 
output signals corresponding to the different strengths of 
the self-couplings are plotted for w1 = 2.0, w2 = 3.5, and 
for the original weights, i.e. w1 = 2.206, w2 = 3.872 
(compare Fig. 7A). Here the sound source is on the left 
side causing I1 to follow I2 with a delay (see Fig. 9A). 
Also, the output of Output1 (O1) is suppressed while O2 
is activated (see Fig. 9B and C).  
 

 
 
Fig. 9. (A) The input signals with a delay. (B) shows the 
corresponding oscillating O2 (smashed line) for the 
smaller self-connection weights (w1 = 2.0, w2 = 3.5) 
while O1 is suppressed. (C) shows that O2 is higher than a 
threshold (here 0.5) for stronger self-connection weights 
(w1 = 2.206, w2 = 3.872).  
 
For the smaller self-connection weights, O2 oscillates 
between the low value (around -1) and the high value 
(around +1) as shown in Fig. 9B. For the larger self-
connection weights, O2 oscillates finally with a very 
small amplitude around the high value above a threshold, 
e.g. 0.5   (compare Fig. 9C).  
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Furthermore, the output neurons form a so-called even 
loop (Pasemann, F., 1993b); i.e. they are recurrently 
connected by inhibitory synapses (see Fig. 7A). This 
configuration guaranties that only one output at a time 
can be positive, i.e. it functions as a switch, sending the 
output to a negative value for the delayed input signal. 
The output signals of this phenomenon can be observed 
in Fig. 7C. 
By utilizing these phenomena of the larger self-
connection weights and the even 2-module, one can 
easily apply the output signals to control the walking 
direction of the machine. 
 
3.3. An auditory signal processing network 
 
Here, the integration of the advanced auditory network 
and the sound-direction detection network leads to the 
conclusive auditory signal processing network (see Fig. 
10).  
 

 
 
Fig. 10. The auditory signal processing network which 
functions as a low-pass filter circuit and which has ability 
to detect the directionality of the corresponding signals.  
 
This network has the ability to filter the auditory signals 
and to discern the direction of the input signals. First, the 
sensory inputs (Auditory Input1 and Auditory Input2 in 
Fig. 10) are filtered by the advanced auditory network so 
that only low-frequency sounds can pass. Secondly, the 
outputs from the advanced auditory network are 
connected to the inputs of the sound-direction detection 
network. 

The sound-direction detection network then indicates the 
direction of the corresponding signals. Subsequently, the 
output neurons of the sound-direction detection network 
will be connected to the modular neural controller to 
make the walking machine turn into the appropriate 
direction. Eventually, the walking machine will approach 
and stop nears the source by determining a threshold of 
the amplitude of the auditory signals. 
 
4. The modular neural controller for reactive 
behavior 
 
The modular neural controller consists of two 
subordinate networks which are a neural oscillator 
network generating the rhythmic leg movements, and the 
velocity regulating network (VRN) which expands the 
steering capabilities of the walking machine 
(Manoonpong, P. & Pasemann, F.  & Fischer, J., 2005). 
 
4.1 Neural oscillator network for rhythmic locomotion  
 
The concept of neural oscillators for walking of 
machines has been studied e.g. by Hiroshi Kimura 
(Kimura, H. & Sakurama, K. & Akiyama, S., 1998). 
There, a neural oscillator network with four neurons is 
constructed by connecting four neural oscillator’ s, each 
of which drives the hip joint of one of the legs. Here we 
use a so-called SO(2)—network (Pasemann, F. & Hild, 
M. & Zahedi, K., 2003) to generate rhythmic locomotion. 
It has already been implemented successfully as central 
pattern generator (CPG) in the six-legged walking 
machine Morpheus (Fischer, J. & Pasemann, F. & 
Manoonpong, P., 2004). The same structure and weights 
are applied to control the four-legged walking machine 
AMOS-WD02.  
The network consists of two neurons (compare Fig. 
11A), where the sinusoidal outputs of these oscillating 
elements are signals corresponding to a quasi-periodic 
attractor. They drive the motors directly for generating 
the locomotion. This network is implemented on a PDA 
having an update frequency of 25.6 Hz and it generates a 
sinusoidal output with a frequency of approximately 0.8 
Hz (see Fig. 11B).  
 
4.2 The velocity regulating network 
 
To change the motions, e.g. from walking forwards to 
turning left and right, the simplest way is to perform a 
180 degree phase shift of the sinusoidal signals which 
drive the thoracic joints. To do so, we introduce the 
velocity regulating network (VRN) (Fischer, J., 2004) 
which performs a multiplication of two input values x, y 
∈[-1, 1]. For our purpose the input x is the oscillating 
signal coming from the SO(2)—network, and the input y 
is the sensory signal coming from the auditory signal 
processing network. Fig. 12A presents the network 
consisting of four hidden neurons and one output neuron. 
Fig. 12B shows that the output signal gets a phase shift 
of 180 degrees, when the sensory signal (input y) 
changes from -1 to 1. 
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Fig. 11. (A) The structure of the SO(2)—network with 
the synaptic weights for our purpose. B1 and B2 are bias 
terms with B1 = B2 = 0.01. (B) The output signals of 
neurons 1 (smashed line) and 2 (full line) from the 
SO(2)—network. The output of neuron 1 is used to drive 
all thoracic joints and one backbone joint as well as the 
output of neuron 2 is used to drive all basal joints. 
 

 
 
Fig. 12. (A) The VRN with four hidden neurons and the 
given bias terms B which are all equal to -2.48285. (B) 
The output signal (full line) when the input y is equal to 
+1 and the output signal (smashed line) when the input y 
is equal to -1 while input x is the oscillating signal 
coming from the SO(2)—network. 

4.3 The modular neural controller 
 
The combination of two neural networks (the neural 
oscillator network and the velocity regulating network) 
leads to an effective modular neural controller to perform 
a sound tropism. One oscillating output signal from the 
SO(2)—network is directly connected to all basal joints, 
while another one is connected to the thoracic joints only 
indirectly, passing through all hidden neurons of the 
VRN through the so called x–input (see Fig. 12A). The 
output signals of the auditory signal processing network 
go to Input1 and Input2 of the VRN (compare Fig. 10 
and 13). 
Thus, the rhythmic leg movements are generated by the 
SO(2)—network and the steering capabilities of the 
walking machine are realized by the VRN in accordance 
with the outputs of the auditory signal processing 
network.  The structure of this controller and the location 
of the corresponding motor neurons on the walking 
machine are shown in Fig. 13. 
 

 
 
Fig. 13. This is the modular neural controller. It 
generates a trot gait by the SO(2)—network (smashed 
frame) and it is modified when corresponding sound 
appears. The bias terms B of the VRN (solid frame) are 
all equal to -2.48285. Two outputs from the auditory 
signal processing network are directly connected to the 
input neurons (Input1, Input2) of this controller. If the 
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auditory signals are detected, the outputs of the auditory 
signal processing network make the walking machine 
turn because the VRN changes the quasi-periodic signals 
at the thoracic joints. 
 
By integrating the auditory signal processing network 
and the modular neural controller, the walking machine 
is able to react to a specific sound source, turn to it and 
finally approach it.  
 
5. Experiments and results 
 
To test the capability of the composed system, auditory 
signal processing network and modular neural controller, 
for generating desired sound tropism in the walking 
machine, several experiments have been carried out. The 
sound signals were produced by a powered loudspeaker 
system (30 Watts).  
These signals were recorded and sampled at a sampling 
rate of 5.7 kHz via the auditory sensor system. The 
auditory signal processing network and the modular 
neural controller were programmed on a PDA (Intel (R) 
PXA255 processor). 
For the first experiment, the maximum distance at which 
the system is able to detect the auditory signals was 
measured. During the test, the signals were produced at 
the carrier frequency of 200 Hz and the walking machine 
was placed five times at each of the different locations  
(black square areas) shown Fig. 14.  
 

 
 
Fig. 14. The experimental setup with the sound source 
and the markers (black square areas) where the walking 
machine was placed. 
 
The detection rates of the auditory signals, i.e. the 
number of correct detections2 divided by number of 
experiments, are shown in Table 1.  
 

Distance Detection rate 
40 cm. 100% 
60 cm. 67% 
80 cm. 0% 

 
Table 1. Detection rate of auditory signals at 200 Hz 
from different distances 
                                                            
2 Correct detections mean that the machine can correctly 
discern if the signals are coming from the left or the 
right. 
 

These results can be concluded that the system can 
reliably react to the auditory signals in the radius up to 
around 60 cm. 
The second task was to demonstrate the sound tropism in 
the real environment. The walking machine started from 
three different initial positions (on the left, on the right 
and in front of the sound source) and these specific 
auditory signals were generated as described before. 
Fig. 15 shows a series of photos of these example 
experiments3.  
At the beginning the machine walks forward and when 
the auditory signals are detected, the machine orients its 
movement into the direction of the source. After that it 
makes an approach until a threshold of the amplitude of 
the signals is reached. Finally, it stops nearby the sound 
source.  
From the experimental results, one can see that it does 
not always reach the sound source with its head pointing 
to the source, but sometimes with the side of the body.  
However, these approaching positions would not matter; 
if the walking machine reaches the sound source that is 
sufficient. And we conclude that the walking machine 
can successfully perform a sound tropism at the carrier 
frequency-200 Hz during walking in the distance up to 
around 60 cm. 
 
6. Conclusions 
 
Inspired by the sensory system of the spider and its “prey 
capture behavior”, we stimulate a comparable behavior 
by a simple perception-action system. This system 
consists of an “auditory signal processing network” for 
detecting a low-frequency sound and its direction, and a 
“modular neural controller” to execute reactive behavior 
of the physical walking machine displaying a sound 
tropism. 
Using the auditory sensor system in analogy to the hairs 
of the spiders the sound is preprocessed by a network 
composed of a so-called “advanced auditory network” 
acting as a low-pass filter, and a “sound-direction 
detection network” which discerns the direction of the 
signals. Both networks have been optimized by an 
evolutionary algorithm. 
Furthermore, to generate the locomotion and the 
appropriate change of the walking pattern, the “modular 
neural controller” is applied. This controller is constructed 
by a 2-neuron oscillator network acting as a pattern 
generator, and the “velocity regulating network” (VRN). 
The described walking machine then can detect auditory 
signals at a carrier frequency of 200 Hz in distance up to 
approximate 60 cm.  
We demonstrated that the walking machine recognizes the 
signals coming from the left or the right. It turns into the 
direction of the sound source then approaches, and finally 
it will stop besides the source in a distance determined by a 
threshold of the amplitude of the signals. 
………

                                                            
3For more demonstrations see 
http://www.ais.fraunhofer.de/~poramate 
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Fig. 15. Examples of the sound tropism. (A) The walking machine is able to react to the signals coming from the left 
and it will stop near the source at the end. The walking trajectory is drawn in the lower picture. (B) The walking 
machine is placed in front of the source at the distance of 80 cm. At the beginning, it walks forward and turns toward 
the sound source when it can hear and then it will stop beside the source.  The trajectory from the starting position to the 
end position is drawn in the lower picture. (C) If the signals can be heard from the right, then the walking machine will 
turn right, make an approach to the sound source and stop beside it. Also, the lower picture shows the trajectory of its 
walking. 
 
The demonstrated sound tropism is a positive tropism 
which causes the machine to turn toward the source like 
a predator reacting to the signal of a prey.  Anyhow, 
one can apply this system also for a negative tropism 
meaning that the machine runs away from the sound 

source like a prey fleeing from the sound of a predator. 
However, the described perception-action system can 
be improved by integrating more reasonable behaviors, 
for instance an exploration and an obstacle avoidance 
behavior.



 

XX 

In a next step, we will implement infrared sensors 
together with an additional preprocessing network to 
achieve a more complex behavior of the walking 
machine. Eventually, all these different preprocessor and 
controllers will be merged into one modular neural 
network, where the parts have to cooperate or to 
complete to form versatile intelligent perception-action 
systems. 
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