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Abstract— In this article, a modular neurocontroller is pre­
sented. I t has the capability to generate a reactive behavior
of walking machines. The neurocontroller is formed on the
basis of a modular structure. I t consists of the three dif­
ferent functionalit y modules: neural preprocessing, a neural
oscillator network and velocity regulating networks. Neural
preprocessing is for sensory signal processing. The neural
oscillator network, based on a central pattern generator,
generates the rhythmi c movement for basic locomotion of
the walking machines while the velocity regulating networks
change the walking directions of the machines with respect to
the sensory inputs. As a result, this neurocontroller enables
the machines to explore in­ and out­door environments by
avoiding obstacles and escaping from corners or deadlock
situations. I t was firstl y developed and tested on a physical
simulation environment, and then wassuccessfully transferred
to the six­legged walking machine AMOS­WD06.
Keywords— walking machines, recurrent neural networks,
modular neural control, obstacle avoidance, sensor­driven
reactive behavior.

I . INTRODUCTION

The idea behind this article is to investigate the neural
mechanisms controlling biologically inspired walking ma­
chines represented as sensor­driven systems. The systems
are designed in a way that they can react to real environ­
mental stimuli (positive or negative tropism) as they sense
without concern for task planning algorithm or memory
capacities.

Research in the domain of biologically inspired walking
machineshasbeen ongoing for over 10 years. Most of them
hasbeen focussed on theconstruction of such machines [6],
[14], [17], [29], [31] on a dynamic gait control [25], [33],
and on the generation of an advanced locomotion control
[2], [11], [22], for instance on rough terrain [4], [5], [13],
[18], [21]. In general, these walking machines were solely
designed for the purpose of motion without the sensing of
environmental stimuli. However, from this research area,
only few have presented physical walking machines react­
ing to an environmental stimulususing different approaches
[1], [3], [20], [30].

On the one hand, this shows that less attention has been
paid to the walking machines performing a reactive behav­
ior. On the other hand, such complex systems can serve

as a methodology for study embodied systems consisting
of sensors and actuators for explicit agent­environment
interactions or they can display as artificial perception­
action systems.

Here, the biologically inspired six­legged walking ma­
chine AMOS­WD061 is employed as an experimental
device for the development and testing of a neurocontroller
causing a sensor­driven reactive behavior. This neurocon­
troller is created on the basis of a modular structure; i.e.
it is flexible to adapt for controlling in different walking
machines [27] and it is even able to modify for generating
different reactive behaviors, e.g. sound tropism (positive
tropism) [28]. In this article, it is constructed in the way
that it enables the walking machine to avoid the obstacles
(negative tropism) by changing the rhythmic leg move­
ments of the thoracic joints. Furthermore, it also prevents
the walking machine from getting stuck in corners or
deadlock situations by applying hysteresis effects provided
by the recurrent neural network of the neural preprocessing
module.

The following section describes the technical specifica­
tions of the walking machine together with its physical
simulator. Section 3 explains a modular neurocontroller
together with the subnetworks (modules) for a reactive
obstacle­avoidance behavior. The experiments and results
are discussed in section 4. Conclusions and an outlook on
future research are given in the last section.

II . THE BIOLOGICALLY INSPIRED WALKIN G MACHIN E

AMOS­WD06

The AMOS­WD06 [26] consists of six identical legs and
each leg has three joints (three degrees of freedom (DOF))
which is somewhat similar to a cockroach leg [32]. The
upper joint of the legs, called thoracic joint, can move
the leg forward and backward while the middle and lower
joints, called basal and distal joints respectively, are used
for elevation and depression or even for extension and
flexion of the leg. The levers which are attached to distal
joints were built with proportional to the dimension of the
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machine. And they are kept short to avoid greater torque in
the actuators. This leg configuration provides the machine
with the possibility to perform omnidirectional walking;
i.e. the machine can walk forward, backward, lateral and
turn with different radii. Additionally, the machine can also
perform a diagonal forward or backward motion to the left
or the right by activating the forward or backward motion
together with the lateral left or right motion. The high
mobility of the legs enables the walking machine to walk
over an obstacle, stand in an upside­down position or even
climb over obstacles (see Fig. 1).

Fig. 1. (A) The AMOS­WD06 walks over an obstacle with the maximum
height of 7 cm, (B) stands in an upside­down position and (C) climbs over
obstacles with the help of an active backbone joint (arrow).

Inspired by invertebrate morphology of the american
cockroach’s trunk and its motion (see Fig. 2), a backbone
joint which can rotate in a horizontal axis was constructed.
It is desired to imitate like a connection between the first
(T1) and second (T2) thoracic of a cockroach. Thus, it wil l
provide enough movement for the machine to climb over
an obstacle by rearing the front legs up to reach the top of
an obstacle and then bending them downward during step
climbing (compare Fig. 1C).

Fig. 2. A cockroach climbs over large obstacles. It can bend its trunk
downward at the joint between the first (T1) and second (T2) thoracic to
keep the legs close to the top surface of the obstacles for an optimum
climbing position and even to prevent unstable actions (modified from
R.E. Ritzmann 2004 [32] with permission).

However, this active backbone joint wil l not be activated
in a normal walking condition of the machine. Mainly, it
is used to connect the trunk (second thoracic), where two
middle legs and two hind legs are attached, with the head
(first thoracic), where two forelegs are installed. The trunk
and the head are formed with the maximum symmetry to
keep the machine balanced for the stability of walking.
They arealso designed to beasnarrow aspossible to ensure

optimal torque from the supporting legs to the center line
of the trunk. Moreover, a tail with two DOF rotating in the
horizontal and vertical axes was implemented on the back
of the trunk. The tail was motivated by a scorpion tail
with sting which can actively move [10]. Al l leg joints are
driven by analog servomotors producing a torque between
80 and 100 Ncm. The backbone joint is driven by a digital
servomotor with a torque between 200 and 220 Ncm. For
the tail joints, micro­analog servomotors with a torque
around 20 Ncm were selected. The height of the walking
machine is12 cm without its tail and theweight of the fully
equipped robot (including 21 servomotors, all electronic
components and a mobile processor) is approximately 4.2
kg. In addition, the walking machine has six Infra­Red (IR)
sensors. Two of them, which can detect the obstacle at
a long distance between 20­150 cm, were fixated at the
forehead while the rest of them, operating at a shorter
distance between 4­30 cm, were fixated at the two forelegs
and two middle legs. They help the walking machine to
detect obstacles and prevent its legs from hitting obstacles,
like chair or desk legs. Also, one upside­down detector
was implemented beside the machine trunk. It provides
the information of upside­down position of the walking
machine. On the tail, a mini wireless camera with a built­
in microphone was installed for monitoring and observing
the environment while walking.

Al l in all the AMOS­WD06 has 21 active degrees of
freedom, 7 sensors and 1 wireless camera, and therefore
it can serve as a reasonably complex platform for ex­
periments concerning the functioning of a neural sensor­
driven system. However, to test neurocontrollers and to
observe the reactive behavior of the walking machine
(e.g. obstacle avoidance), it was firstly done through a
physical simulation environment, namely “Yet Another
Robot Simulator” (YARS)2. The simulator is based on
Open Dynamics Engine (ODE) [34]. It provides a defined
set of geometries, joints, motors and sensors which is
adequate to create the AMOS­WD06 with IR sensors in
a virtual environment with obstacles. The basic features of
the simulated walking machine are closely coupled to the
physical walking machine, e.g. weight, dimension, motor
torque and so on. It consists of body parts (head, backbone
joint, trunk and limbs), servomotors, IR sensors and an
additional tail. The simulated walking machine with its
virtual environment is shown in Fig. 3.

Furthermore, the simulator enables an implementation,
which is faster than real time and which is precise enough
to present the corresponding behavior of the physical walk­
ing machine. Thissimulation environment isalso connected
to the Integrated Structure Evolution Environment (ISEE)
[24] which is a software platform for developing neuro­
controllers. In the final stage, a developed neurocontroller
after the test on the simulator is then applied to the
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Fig. 3. (A) Top view of the simulated walking machine with the virtual
environment. (B) The simulated walking machine.

physical walking machine to demonstrate the behavior in
the real environment. The controller is then programmed
into a mobile processor (a personal digital assistant (PDA))
with an update frequency of up to 75 Hz. The PDA is
interfaced with the Multi­Servo IO­Board (MBoard) which
digitizes sensory input signals and generates a pulse width
modulation (PWM) signal at aperiod of 20 ms to command
theservomotors. Thecommunication between thePDA and
the MBoard is accomplished via an RS232 interface at 57.6
kBits per second.

III . NEURAL PERCEPTION­ACTION SYSTEMS

In order to create the robust and effective neurocontroller
which is able to generate exploration and reactive obstacle
avoidance behaviors, the dynamical properties of recurrent
neural networks are utilized. The standard additive neuron
model with sigmoidal transfer function together with its
time­discrete dynamics is given by

n

ai(t+1) = Bi+ Wij tanh(aj(t)) i = 1, . . . , n (1)
j=1

where n denotes the number of units, ai their activity,
Bi represents a fixed internal bias term together with a
stationary input to neuron i, and Wij the synaptic strength
of the connection from neuron j to neuron i. The output
of the neurons is given by the sigmoid oi = tanh(ai).
Input units are configured as linear buffers. The modular
neurocontroller for the desired behaviors are divided into
three subnetworks (modules) which are the signal process­
ing network, the neural oscillator network and the velocity
regulating network. Al l networks are described in detail in
the following sections.

A. Signal processing network

The perception systems are driven by using six IR sensors.
The minimal recurrent controller (MRC) structure [23]
is applied for preprocessing IR signals. This controller
has been originally developed for controlling a miniature
Khepera robot [7], which is a two wheeled platform. Here,
it is modified for controlling the walking directions of the

machine to avoid obstacles or escape from a corner and
even a deadlock situation.

To do so, all signals of IR sensors (IR1, IR2, IR3,
IR4, IR5 and IR6) aremapped onto the interval [−1,+1],
with −1 representing “no obstacles”, and +1 “an obstacle
is detected”. Then, the three sensory signals on each side
(right or left) are simply combined in a linear domain of
the sigmoid transfer function at hidden neurons; i.e. each of
them is multiplied with a small weight, here W1,2,3,4,5,6 =
0.15. The output signals of the hidden neurons are directly
connected to the output neurons (Out1, Out2) while the
final output signals of the network (Output1, Output2)
wil l be connected to another network called the velocity
regulating networks (VRNs) described later. The parame­
ters of the preprocessing network were manually adjusted
on the basis of its well understood functionality [23].

First, the bias term (B) of the hidden neurons is set
to determine a threshold value of the sum of the sensory
inputs, e.g. 0.2. When the measured value is greater than
the threshold in any of the three sensory signals, excitation
of the hidden neuron on the corresponding side occurs.
Consequently, the activation of each hidden neuron can
vary in the range between ≈ ­0.245 (“no obstacles is de­
tected”) and ≈ 0.572 (“all three sensors on the appropriate
side simultaneously detect obstacles”).

Furthermore, the weights from the hidden to the output
units are set to a high value, i.e. W7,8 = 25, to elimi­
nate the noise of the sensory signals. In fact, these high
multiplicative weights drive the signals to switch between
two saturation domains, one low (≈ ­1) and the other high
(≈ +1). After that, the self­connection weights (W9,10)
of Out1 and Out2 were manually adjusted to derive a
reasonable hysteresis input interval which results to an
appropriate turning angle of the walking machine when the
obstacles are detected. Hereby, they are set to 4. Finally,
the recurrent connections (W11,12) between output neurons
were symmetrized and manually adjusted to the value of
­2.5. This guarantees the optimal functionality described
later. The resulting network is shown in Fig. 4.

The set­up parameters cause that the network can elimi­
nate the noise of the sensory signals. The network can even
determine the turning angle in accordance with the width
of the hysteresis loop; i.e. the wider the loop, the larger the
turning angle is. The capability of the network in filtering
the sensory noise together with the hysteresis loop of the
network are shown in Fig. 5.

In addition, there is a third hysteresis phenomenon
involved which is associated to the even loop [8] between
the two output neurons. In general conditions, only one
neuron at a time is able to get a positive output, while
the other one has a negative output, and vice versa. The
phenomenon is presented in Fig. 6.

By applying the described phenomena, the walking
machine is able to avoid the obstacles and escape from
corners as well as deadlock situations. Finally, Output1



Fig. 4. The signal processing network of six IR sensors with the
appropriateweights for controlling thewalking direction of themachine to
avoid obstacles and to prevent the machine from getting stuck in corners
or deadlock situations.

Fig. 5. (A) The sensory signal (IR5, gray line) before preprocessing
and the output signal (Output2, solid line) after preprocessing. (B) The
“hysteresis effects” between input and output signals of Out2. In this
situation, the input of Out2 varies between ≈ ­0.245 and ≈ 0.572 back
and forth while the input of Out1 is set to ≈ ­0.245 (“no obstacles are
on the right side”). Here, when the output of Out2 is active (≈ 1); i.e.
“obstacles are on the left side”, then the walking machine wil l be driven
to turn right until the output becomes inactivated (≈ ­1). On the other
hand, if such condition occurs for Out1, the input of Out1 wil l derive
the same hysteresis effect as the input of Out2 does.

and Output2 of the preprocessing network together with
the velocity regulating networks, described below, decide
and switch the behavior of the walking machine; for
instance, switching the behavior from “walking forward”
to “turning left” when there are obstacles on the right,
or vice versa. The network output also decides in which
direction the walking machine should turn in corners or
deadlock situations depending on which sensor side has
been previously active.

In special situations, like walking toward a wall, both
side (right and left) of IR sensors might get positive
outputs at the same time, and, because of the velocity
regulating networks, the walking machine is able to walk
backward. During walking backward, the activation of the
sensory signal of one side might be still active while
the other might be inactive. Correspondingly, the walking
machine wil l turn into the opposite direction of the active
signal and it can finally leave from the wall.

Fig. 6. (A) and (B) present the sensory signals (IR1 and IR4, gray line)
and the output signals (Output1 and Output2, solid line), respectively.
Due to the inhibitory synapses between two output neurons and the high
activity of Out1 (A), Output2 (B) isstill inactivealthough IR4 becomes
activated at around 170 timesteps. At around 320 timesteps, theswitching
condition between Output1 and Output2 occurs because IR1 becomes
inactivated, meaning “no obstacles detected” while IR4 is still active,
meaning “obstacles detected”.

B. Neural oscillator network for the locomotion

The concept of neural oscillators for walking machines
has been studied in various works, e.g. [12]. There, a
neural oscillator network with four neurons is constructed
by connecting four neural oscillator’s, each of which drives
each hip joint of the legs of a four­legged robot TEKKEN.
Here a so­called “2­neuron network” [9] is employed.
It is used as a central pattern generator (CPG) which
corresponds to the basic principle of locomotion control of
walking animals [19]. The network consists of two neurons
(seeFig. 7A). It hasalready been implemented successfully
on other walking machines [16], [27]. The same weight
matrixes presented there are used here. Consequently, it
generates the oscillating output signals corresponding to
a quasi­periodic attractor (see Fig. 7B). They are used to
drive the motors directly for generating the appropriate
locomotion of the AMOS­WD06.

Fig. 7. (A) The structure of the 2­neuron network with the synaptic
weights for the purpose. B1 and B2 are bias terms with B1 = B2 =
0.01. (B) The output signals of neurons 1 (dashed line) and 2 (solid line)
from the neural oscillator network. The output of neuron 1 is used to
drive all thoracic joints and the activated backbone joint while the output
of neuron 2 is used to drive all basal and all distal joints.

This network is implemented on a PDA with an update
frequency of 25.6 Hz. It generates a sinusoidal output with
a frequency of approximately 0.8 Hz. By using symmetric
output weights, a typical tripod gait for the six­legged
walking machine is obtained. This typical gait enables an
efficient motion, where the diagonal legs are paired and
move together.



C. The velocity regulating network

To change the motions, e.g. from walking forward to
backward and to turning left and right, the simplest way is
to perform a180 degreephaseshift of thesinusoidal signals
which drive the thoracic joints. To do so, the velocity reg­
ulating network (VRN) is introduced. The network used is
taken from [15]. It performs an approximatemultiplication­
like function of two input values x, y ∈ [−1,+1]. For this
purpose the input x is the oscillating signal coming from
the neural oscillator network to generate the locomotion
and the input y is the sensory signal coming from the
neural preprocessing network to drive the reactivebehavior.
The output signal of the network wil l be used to drive
the thoracic joints. Fig. 8A presents the network consisting
of four hidden neurons and one output neuron. Fig. 8B
shows that the output signal which gets a phase shift of
180 degrees, when the sensory signal (input y) changes
from ­1 to +1.

Fig. 8. (A) The VRN with four hidden neurons and the given bias terms
B which are all equal to ­2.48285. The Input x is the oscillating signal
coming from the neural oscillator and the Input y is the output signal
of the neural preprocessing. (B) The output signal (solid line) when the
input y is equal to +1 and the output signal (dashed line) when the input
y is equal to ­1.

D. The modular neurocontroller

The combination of all three networks (modules) leads to
an effective neural network for reactive behavior control in
changing environments. On the one hand, one oscillating
output signal from the neural oscillator network is directly
connected to all basal and distal joints. On the other
hand, the other output is connected to the thoracic joints
only indirectly, passing through all hidden neurons of the
VRNs through the so called x–inputs. The outputs of the
signal processing network are also connected to all hidden
neurons of the VRNs as y–inputs. Thus, the rhythmic leg
movement isgenerated by theneural oscillator network and
the steering capability of the walking machine is realized
by the VRNs in accordance with the outputs of the signal
processing network. The structure of this controller and the

location of thecorresponding motor neuronson thewalking
machine AMOS­WD06 are shown in Fig. 9.

Fig. 9. (A) The modular neurocontroller. It generates a tripod gait which
is modified when obstacles are detected. The bias terms (B) of the VRNs
are again all equal to ­2.48285. Six IR sensors are directly connected
to the input neurons of the signal processing network. If the obstacle is
detected, the outputs of the signal processing make the walking machine
turn because the VRNs change the quasi­periodic signals at the thoracic
joints. (B) The layout of all motor and input neurons.

IV. EXPERIMENTS AND RESULTS

The performance of the modular neural network shown in
Fig. 9 is firstly tested on the physical simulation with a
complex environment (see Fig. 3), and then it is down­
loaded into the mobile processor of the AMOS­WD06 for
a test on the physical autonomous robot. The simulated
walking machine and the physical walking machine behave
qualitatively. The sensory information of IR sensors is
used to modify the machine behavior as expected from
a perception­action system. If the obstacles are presented
on either the right or the left side, the controller wil l
change the rhythmic movement at the thoracic joints of
the legs, causing the walking machine to turn on the spot
and immediately avoiding the obstacles. In some situations,
like approaching a corner or a deadlock situation, the
preprocessing network decides the turning direction.



Fig. 10. Left: The left sensor (IR4) detected the obstacle while the other
sensors (IR1, IR2, IR3, IR5 and IR6) did not detect the obstacle; this
caused motor neurons (M0, M1 and M2) on its right to change into the
opposite direction. As a result, the walking machine wil l turn right. Right:
If the obstacle is detected at the right of the walking machine (here, it
was detected by only IR1), then the motor neurons (M3, M4 and M5)
on its left are reversed. Consequently, the walking machine wil l turn left.

The modification of the motor neurons with respect to
the sensory inputs is exemplified in Fig. 10.

M0, M1 and M2 of the thoracic joints (compare Fig. 9,
left) are turned into the opposite direction because one of
the left sensors (here, IR4) detects the obstacle. On the
other hand, M3, M4 and M5 of the thoracic joints are
turned into the opposite direction when, at least, one of the
right sensors (here, IR1) is active (compare Fig. 9, right).
In special situations, e.g. walking toward awall or detecting
obstacles on both sides, IR sensors of both side may be
active simultaneously. Thus, M0, M1, M2, M3, M4 and

M5 of the thoracic joints are reversed which causes the
walking machine to walk backward and eventually it is
able to leave the wall.

Fig. 11 presents the example reactive behavior of the
walking machinedriven by thesensory inputs together with
the modular neurocontroller. A series of photos on the left
column in Fig. 11 shows that the walking machine can
escape from a deadlock situation and it can also protect
its legs from colliding with the legs of a chair (see middle
column in Fig. 11). Moreover, it waseven able to turn away
from the unknown obstacles which were firstly sensed by
the sensors at the forehead and then were detected by the
sensors on the left legs (see right column in Fig. 11).

Fig. 11. Examplesof thebehavior driven by the IR sensorsof theAMOS­
WD06. Left: The AMOS­WD06 escaped from a corner­like deadlock
situation without getting stuck. Middle: It was able to protect its legs
from colliding with the leg of a chair which was detected by the sensors
installed on the right legs. Right: It turned away from the unknown
obstacles which were detected by the sensors at the forehead (IR1 and
IR4) and then at the left legs (IR5 and IR6).

As demonstrated, the modular neurocontroller is ade­
quate to successfully complete the obstacle avoidance task.
Due to the capability of the controller, the walking machine
can perform an exploration task or a wandering behavior
without getting stuck in the corner or the deadlock­like
situation.



V. CONCLUSIONS

The six­legged walking machine AMOS­WD06 is pre­
sented as a reasonably complex robot platform to test
a neurocontroller generating the robust sensor­driven ex­
ploration and obstacle avoidance behaviors. The modular
neurocontroller was designed as a neural network consist­
ing of a signal processing network for preprocessing IR
signals, a neural oscillator network for generating basic
locomotion, and the velocity regulating network (VRN)
for changing the locomotion appropriately. The controller
is used to generate the walking gait and to perform the
reactive behavior; for instance, exploring an in­door en­
vironment by wandering around, avoiding obstacles when
they are detected, and leaving from a corner­like deadlock
situation. The controller has been tested successfully in
the physical simulation environment as well as on the
real world walking machine. Thus we were able to repro­
duce these basic behaviors, generally achieved for wheeled
robots, also for a machine with many degrees of freedom.
The generated behaviors are of course essential for an
autonomous walking machine. More demanding tasks wil l
be related to the use of additional sensors. Therefore, future
research we wil l make use of auditory signals coming from
a stereo auditory sensor. It wil l be used for navigation
based on sound tropism. Finally all these different reactive
behaviors wil l be fused into one modular neurocontroller,
where modules have to cooperate or compete as in versatile
perception­action systems.

REFERENCES

[1] A. D. Horchler, R. E. Reeve, B. Webb and R. D. Quinn (2003)
“Robot phonotaxis in the wild: A biologically inspired approach
to outdoor sound localization” 11th International Conference on
Advanced Robotics (ICAR’2003), Coimbra, Portugal.

[2] C. R. Linder (2005) “Self­organization in a Simple Task of Mo­
tor Control Based on Spatial Encoding” International Society for
Adaptive Behavior, Vol. 13(3), pp. 189­209.

[3] D. Filliat, J. Kodjabachian and J. A. Meyer (1999) “Incremental
evolution of neural controllers for navigation in a 6legged robot”
the 4th International Symposium on Artificial Lif e and Robotics.

[4] D. Spenneberg and F. Kirchner (2005) “Embodied Categorization of
Spatial Environments on the basis of Proprioceptive Data” In Proc.
of the 3rd International Symposium on Adaptive Motion in Animals
and Machines, ISLE Verlag, ISBN: 3­938843­03­9, Ilmenau.

[5] E. Celaya and J. M. Porta (1998) “A Control Structure for the
Locomotion of a Legged Robot on Difficul t Terrain” IEEE Robotics
and Automation Magazine, Vol. 5, pp. 43­51.

[6] E. S. Briskin, V. V. Chernyshev and A. V. Maloletov (2003) “On
conception of walking machines designing” The 11th Interantional
Conference on Advanced Robotics.

[7] F. Mondada, E. Franzi, and P. Ienne (1993) “Mobil e robot minia­
turisation: A tool for investigation in control algorithms” In Proc.
of the 3rd International Symposium on Experimental Robotics, pp.
501­513.

[8] F. Pasemann (1993) “Discrete dynamics of two neuron networks”
Open Systems and Information Dynamics, 2, pp. 49­66.

[9] F. Pasemann, M. Hild and K. Zahedi (2003) “SO(2)­Networks as
Neural Oscillators” Lecture Notes In Computer Science, Biological
and Artificial computation: Methodologies, Neural Modeling and
Bioengineering Applications, IWANN 7’th.

[10] F. T. Abushama (1964) “On the behaviour and sensory physiology
of the scorpion Leirus quinquestriatus” Animal behaviour, Vol. 12,
pp. 140­153.
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