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Abstract – In this paper, structure and function of reactive 
neural control for autonomous robots are discussed. The 
controller utilizing discrete-time neurodynamics is applied to 
generate various reactive behaviors, like obstacle avoidance 
(negative tropism) and phototaxis (positive tropism), of  two-
wheeled robots. Adding additional neural networks leads to 
an effective modular reactive neural controller, which is then 
employed to reproduce these reactive behaviors, generally 
achieved for wheeled robots, also for walking machines with 
many degrees of freedom. 
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I. INTRODUCTION 

Developments of embodied control techniques for 
autonomous robots, enabling them to interact with their 
environments or even to adapt themselves into specific 
survival conditions, have been in progress since 1953 
[1], [2], [3], [4], [5], [6]. This robotic domain is 
attractive because: first, such robotic systems can be 
used as models to test hypotheses regarding the 
information processing and control of the systems [7], 
[8], [9]; second, they can serve as a methodology for 
the study of sensory-motor coordination [10], [11], 
[12]; third, they can form the interconnection between 
biology and robotics through the fact that biologists can 
use robots as physical models of animals to address 
specific biological questions while roboticists can 
formulate intelligent behavior in robots by utilizing 
biological studies [13], [14], [15], [16]; last but not 
least,  the principle of creating such systems combines 
various fields of study in order to achieve “autonomous 
intelligent systems”, which is an active area of research 
and a highly challenging field.  

From this point of view, the work described here 
continues in this tradition. Thus, in this article, we 
present small reactive neural control which is firstly 
developed for two-wheeled robots. The controller 
allows the robots interact with their environment. That 
is they can explore their environment by avoiding 
obstacles (negative tropism), turn toward a light source 
(positive tropism), and then stop near to it. 

Furthermore, this neural controller is integrated with 
additional neural control modules. This combination 
leads to a so-called modular reactive neural controller 
which is then applied to reproduce such reactive 
behaviors for walking machines with many degrees of 
freedom. However, the main purpose of this article is 
not only to demonstrate the autonomous robots 
performing different types of tropism but also to 
investigate the analyzable neural mechanisms 
underlying this approach in order to understand their 
inherent dynamical properties. Moreover, in this study, 
we will try to show that reactive neural control can be a 
powerful technique to better understand and solve 
sensory-motor coordination problems of systems 
deriving from simple wheeled robots to complex 
walking machines.  

The next section describes neural modeling 
employed throughout this work. Section III shows the 
reactive neural control for two-wheeled robots. Section 
IV presents the modular reactive neural control for 
walking machines. Conclusions are given in the last 
section. Note that in the following description, results 
and discussions are often being described alongside the 
structural elements from which they mainly derive, 
because this better reflects the tight intertwining of 
structure and function in this approach.  

 

II.NEURAL MODELING 

A biological neuron has a high complexity in its 
structure and function; thus, it can be modeled at 
various levels of detail. If one tried to simulate an 
artificial neuron model similar to the biological one, it 
would be impossible to work with. Hence an artificial 
neuron has to be created in an abstract form which still 
provides the main features of the biological neuron. In 
the abstract form for this approach, it is simulated in 
discrete time steps and a neural spiking frequency (or 
called a firing rate) is reduced to only the average firing 
rate. Moreover, the amount of time that a signal travels 
along the axon is neglected. The structure of a standard 
additive neuron model is shown in Fig. 1. 
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Fig. 1 The structure of an artificial neuron. Each neuron can 
have multiple input connections, which can originate from 
other neurons or from a sensor, but there is only one output 
signal. Then the single output signal can be distributed in 
parallel (in other words, multiple connections carrying the 

same signal) to other neurons or to an external system, e.g., a 
motor system. 

 
The activation and output of the neuron used 

throughout this work are governed by (1), (2), 
respectively: 
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where n denotes the number of units, ai their activity, 
Bi represents a fixed internal bias term together with a 
stationary input of neuron i, Wij the synaptic strength of 
the connection from neuron j to neuron i, and oi the 
output of neuron i. Input units, e.g., sensory neurons, 
are configured as linear buffers. 
 

III. REACTIVE NEURAL CONTROL  FOR  TWO-WHEELED 
ROBOTS 

In this section, we present reactive neural control for 
two-wheeled robots (see Figs. 2 and 3). The controller 
serves to eliminate the sensory noise and shape all 
sensory data for generating phototaxis (positive 
tropism) and obstacle avoidance (negative tropism) 
behavior. It is constructed based on the minimal 
recurrent controller (MRC) structure [17]. The MRC 
has been developed for controlling only obstacle 
avoidance behavior of a miniature Khepera robot, 
which is a two wheeled platform. 
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Fig. 2 Diagram of reactive neural control. The controller acts 
as an artificial perception-action system. That is, it filters and 

shapes sensory signals. Afterwards it provides outputs 
directly commanding actuators. As a result, the robot’s 

behavior is produced by interacting with its environment in a 
sensory-motor loop. 

Here, it is adjusted and expanded in the way that it 
enables a  sensor-driven wheeled robot (Fig. 3B) to not 
only avoid obstacles or escape from a deadlock 
situation (negative tropism) but also effectively turn 
toward and approach a light source (positive tropism).  
By doing so, the reactive neural controller is developed 
as follows. The principle connection weights W1,...,4 of 
the network (see Fig. 3A) were manually adjusted with 
respect to dynamical properties of recurrent neural 
networks. First, the self-connection weights W1,2 of the 
output neurons O1,2 were manually tuned to derive a 
reasonable hysteresis interval on the input space. That 
is the width of the hysteresis is proportional to the 
strength of the self-connections (see [18], [19] for 
details). In this case, the hysteresis effect determines 
the turning angle for avoiding obstacles and 
approaching a light source, i.e., the wider the 
hysteresis, the larger the turning angle. Both self-
connections are set to 2.0 to obtain a suitable turning 
angle (see Figs. 4A and C). Then, the recurrent 
connections W3,4 between output neurons were 
symmetrized and manually adjusted to −3.5. Such 
inhibitory recurrent connections are formed as a so-
called even loop [20], which also shows hysteresis 
phenomenon (see Fig. 4B). In general conditions, only 
one neuron at a time is able to produce a positive 
output, while the other one has a negative output, and 
vice versa. However, both neurons can show high 
activation only if their inputs are very high, e.g., > 0.64 
(see Fig. 4B). This guarantees the optimal functionality 
for avoiding obstacles or escaping from corner and 
deadlock situations. The sensor values (LDR and IR) 
are linearly mapped into the closed interval [−1,+1]. 
For the LDR sensors, values LDR = −1.0 refers to 
darkness and LDR = +1.0 to the maximal measurable 
light intensity. The IR values are −1.0 if no obstacle is 
detected and value +1.0 represents that an obstacle is 
near. The left IR sensor signal is used as the first input 
(Input1) to the network while the second input (Input2)  



 

 
 
Fig. 3 (A) The reactive neural control for the coordination of 

positive (LDR sensor signals) and negative (IR sensor 
signals) stimuli. Its outputs O1,2  are directly used to control 

left and right motors of the robot, respectively. Note that H1,2  

are the hidden neurons of the network. (B) A sensor-driven 
wheeled robot for experiment with this reactive controller. It 

consists of two wheels, two infra-red (IR) and two light 
dependent resistor (LDR) sensors. 

 
corresponds to the right one. Parallelly, the left and 
right LDR sensor signals are provided as the third 
(Input3) and forth (Input4) inputs indirectly passing 
through hidden neurons H1,2. Concerning the priority of 
the sensory signals, here the IR sensor signals are 
desired to have higher priority than the LDR sensor 
signals. That is if obstacles and light are detected at the 
same time, the neural controller has to elicit IR sensor 
signals and inhibit LDR sensor signals. As a 
consequence, the obstacle avoidance behavior will be 
executed instead of the phototaxis. The phototaxis is 
performed if and only if the obstacles are not detected. 

To do so, we set the connection weights W5,6 from 
Input1 and Input2 to the output units to higher values 

than the ones W7,8 connecting between the hidden and 
output neurons. Thus, they were set to W5,6 = 7.0 and 
W7,8 = 4.5. To ensure the optimal functionality for 
priority setting of the sensory signals, we additionally 
project two inhibitory connections W9,10 from Input1 
and Input2 to H1 and H2, respectively, together with a 
bias term B at each hidden neuron. These parameters 
were again manually tuned and were, as a result, set to 
W9,10 = −2.0 and B1,2 = −1.5. Furthermore, two 
inhibitory synapses W11,12  were extra integrated and set 
with the same strength of W7,8, i.e., −4.5. These 
inhibitory cross connections cause that an activated 
output neuron (showing high activation ≈ +1) driven by 
its ipsilateral LDR signal can become deactivated 

(showing low activation ≈ −1) if the contralateral LDR 
signal becomes activated (see Fig. 4D). An important 
effect of this cross inhibition is to obtain effective 
phototaxis; i.e., the robot is able to drive forward 
during performing phototaxis and finally can approach 
to the source. On the other hand, without these cross 
inhibition the robot will only try to turn toward the 
source without performing forwards motion. As a 
consequence, such a behavior might have difficulties to 
approach the source. Note that one can optimize the 
network parameters, for instance by using an 
evolutionary algorithm [17] but for our purposes here, 
it is good enough. The complete neural network and its 
inherent dynamical properties are shown in Figs. 3 and 
4, respectively. 

This structure and its parameters cause the network 
to filter, prioritize, and coordinate the different sensory 
inputs. It can even determine the turning angle as well 
as the turning direction of the robot  by utilizing the 
hysteresis effect. As a result, the robot can 
autonomously perform phototaxis and obstacle 
avoidance behavior through a sensory-motor loop with 
respect to environmental stimuli. In other words, it will 
turn toward, approach, and eventually stop near a light 
source by determining a threshold of the mean value of 
the left and right LDR sensor signals. At the same time, 
it will also avoid obstacles if they are detected. 

 

IV. MODULAR REACTIVE NEURAL CONTROL FOR 
WALKING MACHINES 

In order to reproduce the desired reactive behaviors 
presented in the previous section also for a walking 
machine1, additional neural control called modular 
neural locomotion control is required while the reactive 
                                                 
1 In this article, the six-legged walking machine AMOS-WD06 is 
used to test the capability of the controller. The description of the 
walking machine is presented in [18], [19]. 
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Fig. 4 (A), (B) Hysteresis domain of Input1 (left IR) for the 
output neuron O2 of the network while the other output 
neuron O1 shows low  ≈ −1 and high  ≈ +1 activation, 

respectively. All other sensory inputs (right IR, left and right 
LDRs) are fixed to  ≈ −1 for case (A) but  ≈ +1 for case (B). 
In case (A), the robot drives forward F (drawing on the left) 

as long as O1 and O2 give low activation but it turns right TR 
as soon as the left IR input increases to values above −0.55 

where only O2 shows high activation meaning that there is an 
obstacle on its left (drawing on the right). However, it returns 
to move forward F when the left IR input decreases to values 

below −0.68 meaning that no obstacle is detected. In case 
(B), the robot turns left TL (i.e., it avoids an obstacle on its 
right despite it detects a light source in front of it, compare 

drawing on the left) as long as the value of the left IR input is 
below 0.64 where O1 has high activation while O2 shows low 
activation. Increasing the value of the left IR input above 0.64 
causes O2 to become active. The robot then drives backward 

B, i.e., it detects obstacles on both sides (drawing on the 
right). It will return to turn left TL again if the value of the 
left IR input is below 0.54. (C) Hysteresis domain of Input3 

(left LDR) for O1 with the other inputs fixed to  ≈ −1. O1 
shows high activation if the left LDR input increases to 

values above −0.25 and returns to low activation if the left 
LDR input decreases to values below −0.4 while O2 shows 

low activation in all cases. As a result, the robot turns left TL 
(drawing on the right) when O1 shows high activation 

meaning that it turns toward a light source otherwise it drives 
forward (drawing on the left). (D) Hysteresis domain of 

Input3 (left LDR) for O2 with the other inputs fixed as all IR 
inputs ≈ −1 and the right LDR input ≈ +1. Here, O2 shows 

low activation only if the value of the left LDR input is 
higher than −0.13 while O1 gives low activation all the time. 

However, O2 will provide high activation if the left LDR 
input decreases to values below −0.28. As a consequence, the 
robot turns toward the source (drawing on the left) and then it 

is able to move forward if the source is almost in front of it 
(drawing on the right) causing high activation of both LDR 

signals. Finally, it can approach to the source. In reverse 
cases, if the right IR and LDR inputs are varied while the 
other inputs are fixed, they will derive the same hysteresis 

effect as shown here. 

 
Fig. 5 Diagram of reactive modular neural control. It consists 
of two main units: neural preprocessing and modular neural 

locomotion control units. The neural preprocessing unit, 
obtained from the reactive neural control of the wheeled 

robot, filters and shapes sensory signals. The preprocessed 
sensory signals are used to control orienting behavior of a 
six-legged walking machine through the modular neural 

locomotion control unit. As a result, the desired phototaxis 
and obstacle behavior are generated by the interaction 

between the walking machine and its environment. 

neural control described above is used here as a neural 
preprocessing unit. The entire control structure is 
shown in Fig. 5. The modular neural locomotion 
control consists of three subordinate networks2 or 
modules (colored boxes in Fig. 6): a neural oscillator 
network, two velocity regulating networks (VRNs), and 
a phase switching network (PSN). The neural oscillator 
network, serving as a central pattern generator (CPG) 
[18], generates periodic output signals. These signals 
are provided to all coxa-trochanteral (CTr-) and femur-
tibia (FTi-) joints (see Fig. 6) only indirectly passing 
through all hidden neurons of the PSN. The thoraco-
coxal (TC-)  joints (see Fig. 6) are regulated via the 
VRNs. Thus, the basic rhythmic leg movement is 
generated by the neural oscillator network and the 
steering capability of the walking machine is realized 
by the PSN and the VRNs.  

Fig. 6 shows the complete network structure together 
with the synaptic weights of the connections between 
the controller and the corresponding motor neurons as 
well as the bias term of each motor neuron. These 
synaptic weights and all bias terms were manually 
adjusted to obtain an optimal gait; i.e., a typical tripod 
gait where the diagonal legs are paired and move 
synchronously. 

This modular neural control can generate different 
walking patterns which are controlled by the four input 
neurons (I2,...,5). Furthermore, a self-protective reflex 
(see [19] for details) can be activated via the input 
neuron I1 which will excite TR1 and TL1 joints (TC- 
                                                 
2 A more complete description of each subordinate network is given 
in [18], [19]. 
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Fig. 6 The modular neural locomotion control of the six-
legged walking machine AMOS-WD06 consists of three 
different neuron groups: input, hidden, and output. Input 

neurons I are the neurons used to control walking direction 
(I2,...,5) and to trigger the protection reflex (I1). Hidden 

neurons H are divided into three modules (CPG, VRNs, and 
PSN (see [18], [19] for details)). Output neurons (TR, TL, CR, 

CL, FR, FL, BJ) directly command the position of servo 
motors. Abbreviations are: BJ = a backbone joint, TR(L) = 
TC-joints of right (left) legs, CR(L) = CTr-joints of right 

(left) legs, FR(L) = FTi-joints of right (left) legs. All 
connection strengths together with bias terms are indicated by 

the small numbers except some parameters of the VRNs 
given by A = 1.7246, B = −2.48285, C = −1.7246. The 

location of the motor neurons on the AMOS-WD06 and the 
movement of its leg joints are shown in the lower picture. 
Here, the backbone joint functions as a rigid connection. 

However, it can be modulated by the periodic signal via the 
PSN or VRNs to perform an appropriate motion, e.g., 

climbing over obstacles. 

 
joints of the right and left front legs, respectively, see 
Fig. 6) and all CTr- and FTi- joints and inhibit the 
remaining TC-joints. Appropriate input parameter sets 
for the different walking patterns and the reflex 
behavior are presented in Table I where the first 
column describes the desired actions in accordance 
with five input parameters shown in the other columns. 
Abbreviations are: FDiR and BDiR = forward and 
backward diagonal motion to the right, FDiL and BDiL 
= forward and backward diagonal motion to the left, 
LaR and LaL = lateral motion to the right and the left. 
Note that marching is an action where all the legs are 
positioned and held in a vertical position and support is 
switched between the two tripods. 

TABLE I 
INPUT PARAMETERS FOR THE DIFFERENT WALKING PATTERNS 

AND THE SELF-PROTECTIVE REFLEX BEHAVIOR 
 

Action I1 I2 I3 I4 I5 
Forward 0 1.0 1, 0 −1.0 −1.0 
Backward 0 1.0 1, 0 1.0 1.0 
Turn right 0 1.0 1, 0 −1.0 1.0 
Turn left 0 1.0 1, 0 1.0 −1.0 
Marching 0 1.0 1, 0 0.0 0.0 
FDiR 0 0.0 0 −1.0 −1.0 
BDiR 0 0.0 0 1.0 1.0 
LaR 0 0.0 0 0.0 0.0 
FDiL 0 0.0 1 −1.0 −1.0 
BDiL 0 0.0 1 1.0 1.0 
LaL 0 0.0 1 0.0 0.0 
Reflex 1 0.0,…,

1.0 
1,0 −1.0,

…, 1.0 
−1.0, 
...,1.0 

 
As shown in Table I, this neural controller can 

produce at least 12 different actions with respect to the 
given inputs. Nevertheless, in this article, we simulate 
the reactive phototaxis and obstacle avoidance behavior 
representing as orientational responses; i.e., the 
walking machine will perform orienting walking 
behavior as soon as it is activated by the positive (light) 
or negative (obstacles) stimuli. Thus, in the robot 
walking experiments, the input parameters I1,...,3 are 
fixed as I1 = 0, I2 = 1.0, and I3 = 1 or 0 where the 
diagonal and lateral motions as well as the reflex action 
are deactivated. On the other hand, I4,5 will be 
stimulated by preprocessed sensory signals O1,2 coming 
from the neural preprocessor , respectively (compare 
Figs. 3A and 6). As a result, the walking machine will 
behave qualitatively as the wheeled robot does; i.e., it 
walks forward if no obstacle or light is detected and it 
will turn right or left with respect to the sensory 
signals, e.g., turn toward a light source (positive 
stimuli) but turn away from obstacles (negative 
stimuli).  These reactive behaviors are exemplified in 
Fig. 7. We encourage readers to see more 
demonstration at http://www.nld.ds.mpg.de/~poramate/ 
AMOSWD06.html. 

 

V. CONCLUSIONS 

This article presents reactive neural network utilizing 
dynamical properties of recurrent neural networks, e.g., 
hysteresis phenomena, for behavior control. It is first 
developed to generate different types of tropism for a 
two-wheeled robot. Afterwards, the controller is 
expanded by integrating with other modular neural 
control in order to also reproduce the desired reactive  
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Fig. 7 The phototaxis and obstacle avoidance behavior of the 
six-legged walking machine AMOS-WD06.  The machine 

walked forwards at the beginning. At around 1.8 s, an 
obstacle was placed in front of it. The walking machine then 

turned to the left to avoid it at around 4.6 s (obstacle 
avoidance behavior). After that, at around 8.3 s, a light source 

was provided. It turned towards the source at around 11 s. 
Eventually, it approached and stopped in front of the source 

(phototaxis). 

 
behaviors for a walking machine. The experimental 
results show the efficacy of the proposed neural control 

approach which can solve sensory-motor coordination 
problems of the systems deriving from simple to 
complex ones. 
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