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Abstract

Goal-directed decision making in biological systems is broadly based on associations between conditional
and unconditional stimuli. This can be further classified as classical conditioning (correlation based learning) and
operand conditioning (reward-based learning). A number of computational and experimental studies have well
established the role of the basal ganglia (striatal system) towards reward-based learning, where as the cerebellum
evidently plays an important role in developing specific conditioned responses. Although, they are viewed as
distinct learning systems [1], recent animal experiments point towards their complementary role in behavioral
learning, and also show the existence of substantial two-way communication between the two structures [2].
Based on this notion of co-operative learning, in this work we hypothesize that the basal ganglia and cerebellar
learning systems work in parallel and compete with each other (Figure 1). We envision such an interaction be-
ing driven by a simple reward modulated heterosynaptic plasticity (RMHP) rule [3], in order to guide the over
all goal-directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and feed-
forward correlation learning model of the cerebellum (input correlation learning-ICO) [4], we demonstrate that
the RMHP rule can effectively combine the outcomes of the two learning systems. This is tested using simulated
environments of increasing complexity with a four-wheeled animat in a dynamic foraging task. Although, they
are modeled within a highly simplified level of biological abstraction, we clearly demonstrate that such a com-
bined learning mechanism, leads to much stabler and faster learning of goal-directed behaviors in comparison to
the individual systems.
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Figure 1: (A) Pictorial representation of the anatomical reciprocal connections between the basal ganglia, thalamus and cerebellum. Green
arrows depict the cortico-striatal reward learning circuitry via the thalamus. Blue arrows depict the cortico-cerebellar recurrent loops for
classically conditioned reflexive behaviors. (B) Combined learning framework with parallel combination of ICO learning and actor-critic
reinforcement learning. Individual learning mechanisms adapt their weights independently and then their final weighted outputs (Oico and
Oac) are combined into Ocom using a reward modulated heterosynaptic plasticity rule (dotted arrows represent plastic synapses). Ocom controls
the agent behavior (policy) while sensory feedback from the agent is sent back to both the learning mechanisms in parallel.
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