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Abstract: Robotic systems inspired from humans have always been lightening up the curiosity of engineers and scientists.
Of many challenges, human locomotion is a very difficult one where a number of different systems needs to interact in
order to generate a correct and balanced pattern. To simulate the interaction of these systems, implementations with reflex-
based or central pattern generator (CPG)-based controllers have been tested on bipedal robot systems. In this paper we
will combine the two controller types, into a controller that works with both reflex and CPG signals. We use a reflex-based
neural network to generate basic walking patterns of a dynamic bipedal walking robot (DACBOT) and then a CPG-based
neural network to ensure robust walking behavior.
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1. INTRODUCTION
Bipedal locomotion has been of interest for the sci-

entific community ([1], [2], [3], [4]). The most difficult
part, still partially unsolved, is to reproduce stable and
adaptable human-like locomotion for artificial systems
([5], [6]). Different bipedal robots were developed ([7],
[8]) with closed-loop control of joint position. However,
their generated locomotion is still non human-like loco-
motion in terms of dynamics, adaptivity, and robustness.
The difficult problem faced by these systems is not only
their design but also how to control them. Here, we pro-
pose adaptive combinatorial neural control for dynamic,
adaptive, robust bipedal locomotion of a biomechanical
robot called DACBOT which is a new generation of Run-
bot ([9]). The controller combines a reflex-based neu-
ral network ([9]) which generates dynamic and adaptive
human-like locomotion ([10]) with a CPG-based neural
network ([11]) which allows for robust locomotion even
without sensory feedback.

2. THE DYNAMIC BIPEDAL WALKING
ROBOT DACBOT

DACBOT (Dynamic, Adaptive, Compliant walking
robot) is a biomechanical bipedal robot which has been
developed based on RunBot ([9]). It is a 600g robot, 26
cm tall from foot to hip. It is connected to a boom that
constrains the robot in the roll and yaw direction. The
treadmill was introduced to test robot walking behavior.

Figure 1 shows a schematic of DACBOT and the real
setup, respectively. As shown, DACBOT is divided into
two parts: An upper body part and a lower leg part.
The upper body is composed of a servo motor carrying
a weight and a gyroscope while the lower leg part has
two legs. Each leg is actuated by hip and knee joints.
With a special design based on a human leg, each leg of
DACBOT consists of a compliant ankle connected to a
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flat foot. It is mainly employed to realize dynamic and
robust self-stabilization in a passive manner. In addition,
each foot has one switch sensor for ground detection as
a binary feedback. The actuators used in the active joints
are modified RC-Servo motors where the built-in con-
trol circuit was disconnected in order to control them as
geared DC motors. The built-in potentiometer was mod-
ified to have the angle feedback of each motor providing
to a controller.

This paper will be mostly focused on locomotion pat-
terns. Therefore, the upper body will not be kept fixed
at a certain position in all experiments. However, adap-
tive upper body control is currently being developed and
will be applied in the future. As a preliminary study,
we use Lpzrobots simulation ([12]) to simulate DACBOT
and test our developed locomotion controller.
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Fig. 1 Left: DACBOT schematic showing joints and feet.
θ refers to an active joint. LF,RF are left and right
foot contact sensors. Right: Real DACBOT setup.

3. ADAPTIVE COMBINATORIAL
NEURAL CONTROL

The adaptive combinatorial neural control is a com-
bination of CPG-based and reflex-based neural networks



(Fig. 2). The reflex-based or reflexive neural network
generates motor commands based on joint angle and foot
contact feedback. While the network can generate dy-
namic and adaptive bipedal locomotion ([9]), it always
fails if sensory feedback is not provided. Thus, here we
apply the CPG-based neural network (Fig. 2) to over-
come this problem. It consists of three neurons (H1,2,3)
with synaptic plasticity (W00,01,10,11,20,02) ([11]).
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Fig. 2 The combination of the reflex-based or reflexive
neural network ([10]) and the CPG-based neural net-
work ([11]). They interact to drive the DACBOT sys-
tem to achieve dynamic, robust, and adaptive loco-
motion. A controller enable is used to switch from
reflex-based to CPG-based control and vice versa.
θLH,RH,LK,RK are left hip, right hip, left knee, and
right knee joint angle feedback. LF,RF are left and
right foot contact feedback. M1,2,3,4 are motor com-
mands.

Figure 2 shows the schematic of the adaptive combina-
torial neural controller. Here only a concept of the con-
troller is given while the details of the reflex-based and
CPG-based neural networks can be seen at ([10], [11]).
The idea behind this controller is to use the CPG-based
network to generate robust bipedal walking even with-
out sensory feedback while the reflex-based or reflexive
neural network can find and generate proper walking fre-
quency according to the robot property and the environ-
ment.

At the beginning, the reflexive network generates lo-
comotion based on joint angle and foot contact sensory
feedback. While walking, the CPG network uses only hip
angle feedback to adapt its internal frequency to match

to walking frequency generated by the reflexive network.
When the reflexive network goes off, the CPG network
can drive the DACBOT system. As long as the hip an-
gle feedback is applied to the CPG network, the network
can adapt its internal frequency to walking behavior with
respect to the environment. If the feedback is removed
from the CPG network, DACBOT will still be able to sta-
bly walk with the entrained walking frequency.

Figure 3 shows a reflexive motor command controlling
the left hip and the CPG outputs before and after adap-
tation. It can be seen that the synaptic plasticity-based
adaptation process of the CPG network entrains its in-
ternal frequency to follow the reflexive one. Analyzing
only one motor command is enough since all the motors
have fixed phase relations. Here, we use the output of
the CPG neuron H1 for controlling DACBOT since after
the adaptation process the output will be in phase with
the reflexive motor command. This will lead to smooth
switching between the reflex-based and CPG-based net-
works; thereby the dynamical stability of the system is
still maintained. The feedback signal is filtered, centered
around the zero, and scaled to the CPG network working
range [-0.2,...,0.2].
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Fig. 3 Reflexive and CPG signals before and after adap-
tation process.

Figure 4 shows the generated motor signals for the hip
and knee joints. The figure only shows signals for one
leg. However, there is a fixed relation between the legs;
therefore the computation of the two remaining signals is
straightforward.

4. EXPERIMENTS AND RESULTS
Figure 5 shows frequency adaptation of the CPG-

based neural network during a walking experiment. At
the first period, DACBOT was driven by the reflexive
neural network. The reflexive network can automati-
cally generate basic DACBOT walking behavior as well
as adapt the behavior to the environment. During walk-
ing, the CPG network with its arbitrary initial internal fre-
quency (here, 6 Hz) adapted its internal frequency to fol-
low the actual walking frequency. At around 2000 time
steps, the CPG network was used to drive DACBOT in-
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Fig. 4 Hips and knees motor signals generated by the
CPG-based neural network.

stead where its frequency adaptation process still contin-
ued to fine tune the walking frequency. In this process,
DACBOT could stably walk without any problem.
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Fig. 5 Forced negative correlation of o1 and o2 after the
adaptation process

Figure 6 shows robust walking behavior of DACBOT
driven by the adaptive combinatorial neural controller
where foot contact is the signal of the ground contact of
the left foot, CPG signal is the signal from the CPG net-
work controlling the left hip, hip angle is the angular po-
sition of the left hip, reflexive signal is the left hip motor
position generated by the reflexive network, and Ext. Per
is the hip sensory feedback applied to the CPG netwrok
for entrainment. From steps 1000 to 2000, the reflexive
signal drove DACBOT while the CPG was adapting its
internal frequency to follow the frequency of Ext. Per. At
step 2000, the reflexive signal went off as well as the foot
contact was not provided anymore. In this situation, the

CPG network took over to drive DACBOT. If any pertur-
bation is applied (e.g., ground change), the CPG network
can adapt its frequency to generate proper walking fre-
quency to deal with the environmental change. At step
4000, Ext. Per was set to zero; thereby the CPG network
drove DACBOT without any sensory feedback. It can be
seen that DACBOT could still stably walk. We encourage
readers to watch the video clip of the robot experiment at
http://www.manoonpong.com/SW2015/SVideo.wmv.
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Fig. 6 Overall system behavior.

5. CONCLUSIONS

This paper presents the development of the adap-
tive combinatorial neural locomotion controller that com-
bines reflex-based and CPG-based neural networks for
adaptive and robust locomotion of the dynamic bipedal
walking robot DACBOT. The robot is essentially com-
posed by an upper part where a servo motor is carrying a
weight to simulate the human upper body and a lower part
with two segmented legs and passive compliant ankles.
The legs have active hip and knee joints driven by mi-
cro servomotors and the passive ankles have springs for
compliance. All the experiments were done by using the
Lpzrobots simulation tool. Based on our control strategy,
the reflex-based or reflexive neural network firstly drives
the DACBOT system and adapt walking behavior of the
system to the environment while the CPG-based neural
network adapts its internal frequency to the actual walk-
ing frequency. Once the internal frequency of the CPG
network has matched to the actual walking frequency or
the CPG output has become in phase with the reflexive
output, the CPG network can be switched to control the
system. The experimental results show that the CPG net-
work can quickly adapt to a walking frequency driven
by the reflexive network. After the adaptation process,



the CPG network can drive the system without sensory
feedback. Although in this study we performed the robot
walking experiments only on flat terrain, our previous
study has shown that such passive compliant ankles used
for DACBOT can provide robust self-stabilization to dis-
turbances, like a sudden bump or a small obstacle placed
on the flat terrain ([13]). For large disturbances, active
upper body control will be required ([10]). In the next
step, the controller will be extended with two CPG net-
works, one per each leg and with a phase coupling net-
work. In addition, the results obtained in the simulation
will be tested on the real hardware.
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