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Abstract: Patients employ orthoses for the lower limbs to gain support for movements they themselves could not perform
at all, or only with difficulties. The combination of patient-abilities and a chosen controller determines suitable devices.
We present a model based controller, which can be individualised with gait samples. It allows continuous control over the
whole gait cycle based on the tracking of gait progress and makes no assumption on the patient’s abilities. We conclude
that the smoothness and linearity of the gait progress tracking allows continuous control which enhances the patient group.
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1. INTRODUCTION
Lower limb orthoses (as in Fig. 1) range from passive

splints to micro controller driven devices with active com-
ponents, like joint locks. These devices support the patient
during rehabilitation, or every day use, for example after
stroke, nerve/muscle tissue damage, or other forms of
paraplegia. Current devices with finite state controllers
support few gaits. To extend the set of supported motions,
the controller has to be able to differentiate and act accord-
ing to the situation. While finite state based controllers can
be extended, for example to include stair descending and
ascending [1], they grow in complexity by means of states
& transitions including parameters for their description.
Therefore, attempts have been made to switch between
sets of finite state controllers [2, 3].

Still, the design by states and transitions make assump-
tions about the gait dynamics, which might not fit all
patients. Tuning can be done with parameters covering
control output and transitions, but not all patients have the
abilities to trigger all state transitions. Often, the patients
are required to adapt their gait to the device.

To overcome restrictions imposed by the state-
transition-design, the presented controller strives to (a)
continuously apply control over the whole gait cycle
and (b) learn individual gait features by observation. To
this end, we train gait models for continuous, linear gait
progress tracking on top of which one can define arbitrary
control output; we make no assumptions about the gait
dynamics and may support arbitrary gaits. We conducted
tests with a healthy walker on a Knee-Ankle-Foot-Orthosis
with a semi-active C-Leg knee joint from Otto Bock.

Without assumptions about when the control decisions
are needed, their ability to change control output should
be distributed equally over the gait cycle with as many
control points as possible. In other words: to support arbi-
trary gaits, the controller should be able to apply control
decisions at any time. We show, that our approach handles
trained gaits with almost sampling resolution. The training
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to specific gaits requires gait model switching to maintain
a high quality of control over different environments.

2. METHODS
The presented controller is based on: (1) Continuous

tracking of the patient’s gait allows to support at any seg-
ment of the step cycle. (2) Training to individual patient’s
gait samples allows to optimise the tracking of the pa-
tient’s gait. (3) An appropriate gait selection mechanism:
The training process leads to overspecialisation of the gait
tracking. This narrowing of scope can be overcome by
support of several specific gaits.

Previous publications focused on item (2) in [4] and
item (3) in [5]. Here, we evaluate the interaction of gait se-
lection and gait tracking, focusing on how the combination
ensures smooth gait tracking for all supported gaits.

2.1. The Device & Sensor Configuration
Development and experiments have been conducted

with a healthy subject on a semi-active knee-ankle-foot-
orthosis by Otto Bock with a C-Leg hydraulic damper,
which allows to dampen knee flexion.

We instrumented the orthosis with a thigh- and knee-
angle sensor and a ground contact switch at the heel.

2.2. Controller Overview
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Fig. 1 Controller overview: the Timing Network
determines the gait phase φ from the sensory 
input in a feed-forward manner.

The controller is composed of two components: 1. A
gait specific controller, which generates the desired knee
damping as feed-forward output of the sensory input vec-
tor. The desired knee damping can be tuned in a closed



loop fashion with a user interface. 2. A gait selection
unit, which uses predictive models for each available gait.
Using the prediction error, it decides which gait specific
controller will execute its knee damping (see [5]).
In Fig. 1, the gait selection unit is represented by the outer
red box in the middle, whereas the gait specific controller
is depicted as two processing steps inside: for each gait,
the gait phase ϕ is determined by the timing network,
which implements continuous gait tracking. On top of
this gait phase, the shaping network will apply the desired
damping d as a function d(ϕ). A user interface allows to
manipulate the damping function d(ϕ) on-line. For pre-
dictable manipulation of d, ϕ should map the gait progress
linearly.

2.3. Gait Tracking
The timing unit implements gait progress tracking and

was designed for: (1) Abstraction: transform sensory input
~s to a generic gait progress ϕ. (2) Individualisation: adapt
the transformation to individual gait. (3) Reaction: react
fast to cope with perturbations. (4) Time-Independence:
no dependence on gait speed or length. (5) Detailed con-
trol: provide smooth gait progress representation for con-
tinuous damping control.

Further processing is independent of the implemen-
tation details because of requirements (1) and (2); (3)
ensures save operation. Requirement (4) gives the flexibil-
ity to handle minor deviations in a gait and with (5) allows
to change damping output accurately over the whole gait
cycle: The presented controller is not event based, i.e.,
changes in the controller’s output are a reaction to gait
progress. The quality of gait progress resolution deter-
mines the detail of applicable damping control.

To support training and later retraining with observed
samples, gait tracking was implemented with a percep-
tron [6], having 3 input, 3 hidden and 2 output neurons.
To get best results, the gait-typical sensory input is scaled
to [−1, 1], and we choose the network’s output to be a
circular (i.e. periodic) motion in the plain, similar to the
input. In a post-processing step, we derive the gait phase
ϕ ∈ [0, 1) from the 2D circular representation:

~s 7→
(
xϕ
yϕ

)
=

(
cos (2πϕ)
sin (2πϕ)

)
,

ϕ =


1
4 xϕ = 0, yϕ ≥ 0
1
2π tan

−1(yϕ/xϕ) xϕ 6= 0
3
4 xϕ = 0, yϕ < 0

.

2.4. Experimental Evaluation of Control Detail
The quality of gait progress resolution determines the

detail of control: As the control architecture applies damp-
ing based on the gait phase, only changes in gait phase can
result in changes of the applied damping. We therefore
want the gait phase ϕ to change continuously and evenly
over the step. Ideally, it produces a linear mapping from 0
to 1 over the gait cycle, whereas high or near zero slopes
indicate sub-optimal resolution.

Thus, we evaluate the quality of the on-line gait phases
ϕ via the smoothness and accuracy in comparison to the

ideal gait phases ϕ′ computed off-line. Therefore, we 1.
split the recording into steps at heel strike and 2. resample
all steps to 200 samples to achieve numerical comparabil-
ity; for sample i: ϕ′i = i

200 .

3. RESULTS
For experimental evaluation of gait progress accuracy,

the gait phases from models for flat walking and stair
climbing were evaluated on the corresponding and oppo-
site terrains. We analysed 30 steps along a floor with 38
steps of stair climbing of a healthy subject wearing the
orthosis. None of these steps covered transitions between
the models to circumvent problems in the interpretation
due to ambiguities [5].

The gait phases ϕ in Fig. 2 were evaluated online and
plotted against the offline computed gait phase ϕ′. In
Figs. 2(a) and 2(d), no model reproduces the ideal gait
progress representation, but the representation is mostly
monotonous with ϕ ≈ ϕ′, except at heel-off, where fast
heel pressure changes induce fast increases in ϕ.

For the mixed cases in Figs. 2(b) and 2(c), we observe
a phase shift of the heel strike of the model representa-
tion to the real heel strike event (ϕ′ = 0). Furthermore,
the model for flat ground on stairs in Fig. 2(b) shows 4
steep increases with almost constant values in between,
while the model for stair climbing on flat ground shows a
decrease in gait progress for almost 20 % of the gait cycle.

The increments ∆ϕ of the gait phases are shown in
Fig. 3, where the native gait model is plotted in red and
the unfitting model is plotted in blue.

The histogram of increments on flat ground in Fig. 3(a)
shows a tendency to more small and negative changes for
the unfitting stair climbing model, for which increments
∆ϕ < 0 are more frequent. For the fitting model it is
reversed, the distribution has a smaller deviation from the
ideal increase of νopt = 1

200 = 0.005, which means fewer
negative changes and fewer increments of large value. For
the flat walking model, 69 % of all increments were in
the interval

[
1
2νopt, 2νopt

]
, whereas for the stair climbing

model, only 31 % were inside this interval.
The distributions for stair climbing (Fig. 3(b)) have a

pronounced peak around the ideal increment νopt for the
native model. Conversely, the model for flat walking has
a peak for increments |∆ϕ| � νopt and more increments
of large value. For the stair climbing model, 65 % of all
increments were in the interval

[
1
2νopt, 2νopt

]
, whereas

for the flat walking model 40 % were inside this interval.
The evaluated phase shifts of Fig. 2 are shown in Ta-

ble 1. In case of the missing steps in the statistics of the

Environment
Flat Ground [◦] Stairs [◦]

Flat 1.8 34.2± 3.7

M
od

el

Stair Climbing −18.0± 1.2 2.5± 5.5

Table 1 Phase shifts of the models for 30 steps on flat
ground and while stair climbing (38 steps for flat model

and 31 steps for stair climbing model).
stair climbing model on stairs, the phase reset to 0 was
immediately at the end of the preceding transition steps
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Fig. 2 Each coloured line indicates gait phases for one of 25 steps on flat ground and 8 on stairs. They are smoother for
the native model in Figs. 2(a) and 2(d), while the unfitting models in Figs. 2(b) and 2(c) show phase shifts and strong
deviations from the desired smooth, linear behaviour of the ideal gait phase ϕ′ indicated by the dashed line.

(a) Increments on Flat Ground (b) Increments while Stair Climbing

Fig. 3 Comparison of increments ∆ϕ for data from Fig. 2: the fitting model (in red) shows fewer negative or almost zero
increments. For a constant function, all increments would be 0.005. The opposing model has more increments of higher
magnitude (collected in one bin) while it is shifted to the left at the same time. All increments |∆ϕ| outside the cut off
were counted in the bins to the sides; the height is according to the normalisation of a bin with identical width to all
other bins.



and therefore excluded, although ϕ was at the same order
of magnitude as for other steps after heel-off, i.e., close to
0. It can be seen, that the fitting model not only offers a
more linear increase in the gait phase representation, but
the unfitting model is suffering a huge phase shift.

4. CONCLUSIONS
At 100 Hz sampling frequency, average steps have

150−200 samples, resulting in 360
200

◦− 360
150

◦
= 1.8◦−2.4◦

per sample, which is comparable to the average precision
shown in Table 1. We conclude, that the presented gait
models are able to resolve the learned gait with a distri-
bution of slopes, which is centred around the slope of
the ideal model (cmp. Fig. 3) and a phase reset which is
matching the heel-strike (cmp. the diagonal cells in Ta-
ble 1). This means, they offer smooth and continuous gait
progress tracking, on which model-free, individualised
control can be founded.

Models trained for different gaits, on the other hand,
show worse performance. We observe sub-optimal incre-
ments in Fig. 3 and significant phase shifts of the heel-
strike event as in the off-diagonal cells of Table 1.

As changes in the control output are bound to changes
of the gait phase ϕ, an even resolution of ϕ, or in other
words a narrow distribution of increments ∆ϕ, is crucial
for detailed and continuous control. Fig. 2(b) shows a con-
troller, that would only have 4 events with drastic changes
of its output, whereas a good phase resolution allows fine
grained control which is theoretically only limited by the
sampling frequency of the underlying hardware.

The phase shift is a consequence of the sensory input’s
inherent phase relation, which changes with gaits, like on
flat ground or stairs. This phase difference between, e.g.,
thigh and knee angle, makes one model for all possible
gaits difficult. Nonetheless, the combination of a well
chosen set of specialised gait models with appropriate gait
switching [5] implements good gait progress resolution
for all gaits.

This raises the important question, how many indepen-
dent motions have to be supported to gain good results for
a specific use case? The application of a fall-back con-
troller to provide simple control in unknown environments
is a necessary precaution.

The advantage of this approach lies in the simplicity of
the used models with the ability to train all components
with live data, i.e., to let the system learn by observation
of its user. The absence of device- and motion-models
allow manifold applications, even in active devices.

The transfer to patients should pose no problems.
While gaits of patients wearing orthoses have a simpler
structure in thigh-knee-angle space, when compared to
healthy walkers, the only necessity is the existence of a
characteristic phase relation, which every gait provides.

The ground contact sensors lead to steps in the gait
phase representation, which might be solved with addi-
tional sensors or pre-processing. But they provide a safety
measure by enabling immediate reactions to stumbling.
The restriction to ipsilateral sensors makes the approach

suitable for real world prosthetic applications.
This is in contrast to approaches which try to achieve

a similar result with gait phase tracking on the healthy
leg, like [7], assuming a constant phase shift between the
legs. A consequence is additional effort for donning the
device. But when stumbling or for other critical events, the
assumed phase relation may be lost, while the presented
approach faithfully reflects the device’s state.

In comparison to state based controllers, the enhanced
resolution of gait cycle tracking allows not only detailed
control and individual patient fitting, but also prevents
the controller to rely on critical points for state transitions,
like specific moments or angles, whose accessibility might
reduce the target group, or worse, might be depending on
the patients fatigue. It handles gaits in a generic manner.

The timing unit provides good resolution for learned
gaits. With gait switching it ensures reasonable resolution
for all supported gaits. As all components are adaptive,
they form the basis for orthoses which adapt to the patients.
Whereas up to now, the patient had to adapt.
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