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Abstract. In this paper a generic approach to the SLAM (Simultaneous
Localization and Mapping) problem is proposed. The approach is based
on a probabilistic SLAM algorithm and employs only two portable sen-
sors, an inertial measurement unit (IMU) and a laser range finder (LRF)
to estimate the state and environment of a robot. Scan-matching is ap-
plied to compensate for noisy IMU measurements. This approach does
not require any robot-specific characteristics, e.g. wheel encoders or kine-
matic models. In principle, this minimal sensory setup can be mounted
on different robot systems without major modifications to the under-
lying algorithms. The sensory setup with the probabilistic algorithm is
tested in real-world experiments on two different kinds of robots: a simple
two-wheeled robot and the six-legged hexapod AMOSII. The obtained
results indicate a successful implementation of the approach and confirm
its generic nature. On both robots, the SLAM problem can be solved
with reasonable accuracy.
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1 Introduction

Solving the Simultaneous Localization and Mapping (SLAM) problem is impor-
tant for a vast variety of different robotic tasks, e.g. performing autonomous nav-
igation [1,2] or completing domestic tasks [3,4]. Probabilistic and other SLAM
techniques have been applied to nearly all kinds of robots, e.g. wheeled [5], fly-
ing [6, 7], walking [8,9] or even underwater robots [10]. In contrast to wheeled
and flying robots, the application of SLAM to walking robots is scarce. While
all these approaches show impressive results, they typically rely either on vi-
sual devices [9,11,12], on leg/body kinematics [13,14] or a multitude of sensors
including robot proprioceptive sensing, e.g wheel encoders. Therefore, they are
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difficult to transfer to different robotic systems. In this paper we present our
Generic SLAM approach. The approach is based on a probabilistic SLAM al-
gorithm and relies only on two portable sensors, an inertial measurement unit
(IMU) and a laser range finder (LRF). It can be applied to different robotic sys-
tems. We have evaluated the performance of this approach on a wheeled robot
and a six-legged walking robot in real-world experiments.

2 Materials and Methods
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Fig. 1. This figure summarizes the Generic SLAM approach. It receives measurements
from an inertial measurement unit (IMU) and a laser range finder (LRF) as an input
to the SLAM/Monte-Carlo localization (MCL) algorithm, which updates the belief of
the robot. Based on this belief, the most likely state and map can be estimated. The
approach is tested on two different robots, the RugWarrior Pro and AMOSII.

The Generic SLAM approach is summarized in fig. 1. It receives measure-
ments from IMU and LRF as inputs. Here, two cases are possible. On the one
hand the IMU output can be used to compute the translational and rotational
velocity of a robot, which is then given to the Velocity Model (VM). This is ap-
propriate, if the IMU data has a low noise level, e.g. when the movement of the
robot is mostly linear. On the other hand, a new state estimate can be computed
based on the acceleration values in combination with scan matching (SM). The
result is then used as an input to the Odometry Model (OM). This approach
is especially useful, if the IMU data exhibits a strong background noise. Scan
matching is able to compensate for this noise at the cost of increased compu-
tational complexity. One of these approaches must be chosen manually. This
SLAM/MCL algorithm utilizes the generated control action and the output of
the LRF to recursively update the state distribution (belief) of the robot. Based
on this belief, the most likely state can be estimated. The individual modules of
the approach are explained as follows:

Odometry Model (OM): The Odometry Model uses two consecutive states
z¢—1 and x; to estimate the movement of a robot. The control action is given
through u; = (Ty—1, ft)T. Based on the difference between both states the rota-
tions d,o¢1 and d,o¢2, as well as the translation d;-q4ns can be computed by apply-
ing geometry. To account for model and measurement errors Gaussian noise is
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added to these variables. The variance of this noise is chosen to reflect the noise
characteristics of the utilized IMU. See [15] for more details.

Velocity Model (VM): The Velocity Model follows a different approach com-
pared to the OM. While the OM relies on relative motion information, the VM
directly utilizes the translational and rotational velocity of a robot. Thus, the
control action is given by u; = (vt,wt)T7 where v; denotes the translational ve-
locity of the robot and w; the rotational velocity. Again, Gaussian noise is added
to these velocities to account for measurement errors. The velocity model as-
sumes these values to be constant over a given time span At. In this case the
robot moves on the arc of a circle. See [15] for more details.

Scan Matching (SM): It is possible to obtain odometry information with
a laser range finder by utilizing a technique called Scan Matching. The basic
idea of scan matching is to evaluate the relative change between two consecutive
scans to obtain an estimate of the corresponding movement of the robot. Here,
a technique called Polar Scan Matching (PSM) is chosen ([16]). The PSM pro-
cedure does not yield any direct information about the velocity of the robot. It
only estimates a position. Thus, it has to be used in combination with the OM.
SLAM/MCL: The SLAM/MCL algorithm updates the belief of the robot
based on the inputs from OM/VM and the previous belief. Both procedures are
implemented using a Particle Filter leading to the so called FASTSlam algorithm
[15]. To run FASTSlam, a measurement probability p(z:|z;) and a state transi-
tion probability p(z¢|ut, x+—1) must be known. Possible choices for p(x|us, x1—1)
can be derived from the described motion models, Likelihood Fields are used to
model p(z¢|z:) [15]. Furthermore, an method to update maps according to the
measurement and state of a particle is required. Here, we use Occupancy Grid
Maps in combination with Bresenham’s Line Algorithm [17].

3 Experiments and Results

Here, we use two different robot platforms to demonstrate the general use of our
approach and to evaluate its performance, the RugWarrior Pro [18] and the six-
legged hexapod AMOSII [19]. To be able to solve the SLAM problem the Hokuyo
URG-04LX-UGO01 Laser Range Finder and the x-IMU are used as a portable
sensor modules. For the experiments on the real robots three different courses
with varying difficulty and complexity are set up (fig. 2). In all experiments the
robots start at the depicted location and traverses the corresponding course until
reaching the end. For all experiments the size of one grid cell is 0.05 m x 0.05 m.
RugWarrior Pro: For the RugWarrior Pro the VM was used. The results
of all three courses are shown in fig. 2. During the experiment for course a),
the robot was steered to the left on purpose to test the functionality of the
algorithm. Indeed, the curve can be seen in the computed paths, both for SLAM
and MCL. Furthermore, the map created by the SLAM algorithm matches the
measured dimensions. However, the computed map appears to be quite noisy.
This was due to the unstable mounting of the LRF and IMU on the robot. The
MCL algorithm provides a more accurate path than the SLAM procedure due
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Fig. 2. This figure shows results of the MCL and GridSLAM algorithm for RugWarrior
Pro and AMOSII traversing the three different courses a), b), and c).. The size of one
grid cell is 0.05m x 0.05m. A video illustrating examples of the real robot experiments
can be seen at http://manoonpong.com/TAROS2015/supple.mp4

to the higher noise sensitivity of SLAM. Overall, the accuracy of the SLAM
algorithm can be estimated with +0.05 m. The results of course b) are similar to
course a). Again, the MCL algorithm provides a slightly less noisy path. But the
difference is surprisingly small considering the additional turns of the robot. The
achieved accuracy is £0.1 m. Course c) is the longest and most complex setup.
However, the accuracy of the results is similar to course a) and b). The accuracy
of the computed map is about 0.1 m. In summary, regardless of the complexity
and length of the course, the SLAM procedure is able to track the path of the
robot with reasonable accuracy. The obtained maps match the dimensions of
the real environments. Furthermore the MCL and SLAM algorithm are able to
successfully deal with erroneous acceleration, velocity and range measurements.
AMOSII: Now, the Generic SLAM approach was tested on the AMOSII robot.
Scan matching was applied to compensate the increased movement noise. The
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same testing procedure and environments as utilized for the RugWarrior Pro
were used. The results are very similar to the ones obtained from the RugWarrior
Pro (fig. 2). However, the accuracy is slightly decreased. This is due to the
stronger noise present in the IMU data. The MCL algorithm is able to track
the correct path of the robot on all courses. In particular, it reproduces the
erratic movement of AMOSII, which can also be seen in the video provided as
supplementary material. The calculated positions do not lie on a straight line, but
are oscillating left and right, exactly like the real motion of AMOSII. The results
of the SLAM algorithm are consistent with the MCL results. Deviations are
about 0.1 m at maximum. The maps created by the SLAM algorithm provide a
rough, but usable representation of the real environment. The differences in wall
positions are between 0.1 m and 0.2 m. When looking at course c), it becomes
apparent that uncertainties accumulate during the SLAM algorithm. This seems
reasonable, because the SLAM algorithm has no ’ground truth’ available to
completely compensate the uncertainties. In MCL this is possible due to the
provided map of the environment.

4 Conclusion

RugWarrior Pro: The real-world experiments with the RugWarrior Pro are
successful. However, in recent research more impressive results are presented.
In [20] a wheeled robot traversed an approximately 7 km long path with many
dynamic obstacles. In [5] a map of a 4 m x 6 m environment is created with an
error of less than 0.07 m. But all of these setups rely on visual devices or wheel
encoders and are generally equipped with more and better hardware. Thus, it is
reasonable, that using only two sensory inputs on the inferior RugWarrior Pro
sacrifices accuracy.

AMOSII: The accuracy of the obtained results is similar to other approaches.
In [8] a humanoid robot maps a 4 m x 7 m environment with a maximum error
of 0.1 m. In [11] a humanoid robot walks in a circle with a radius of 0.75 m. The
resulting map and trajectory again have a maximum error of 0.1 m. Lastly, in
[12] a 0.5 m x 0.5 m environment with rough terrain is mapped with similar ac-
curacy. However, in all of these works the robots used visual information and/or
kinematic models. In this paper, we showed that we are able to achieve the same
results with our minimal and generic approach.

In large, open environments without any objects the LRF does not return any us-
able information. Consequently, the accuracy of the MCL and SLAM algorithm
decreases drastically. Both algorithms work well in indoor environments due to
the abundance of objects and walls. In this paper, a minimal and generic SLAM
implementation relying only on a LRF and an IMU is proposed and successfully
tested on wheeled and legged robots. Consequently, a possible next step could
be experiments with other kinds of robots. In particular, flying robots for indoor
navigation are an interesting choice due to their wide availability and versatility.
Acknowledgment: This research was supported by BCCNII Gottingen with
grant number 01GQ1005A (project D1).
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