IEEE TRANSACTIONS ON CYBERNETICS

Preprint version

Adaptive and Energy Efficient Walking in a Hexapod Robot Under Neuromechanical Control and Sensorimotor Learning

Xiaofeng Xiong, Florentin Wörgötter, and Poramate Manoonpong

Abstract—The control of multilegged animal walking is a neuromechanical process, and to achieve this in an adaptive and energy efficient way is a difficult and challenging problem. This is due to the fact that this process needs in real time: 1) to coordinate very many degrees of freedom of jointed legs; 2) to generate the proper leg stiffness (i.e., compliance); and 3) to determine joint angles that give rise to particular positions at the endpoints of the legs. To tackle this problem for a robotic application, here we present a neuromechanical controller coupled with sensorimotor learning. The controller consists of a modular neural network for coordinating 18 joints and several virtual agonist-antagonist muscle mechanisms (VAAMs) for variable compliant joint motions. In addition, sensorimotor learning, including forward models and dual-rate learning processes, is introduced for predicting foot force feedback and for online tuning the VAAMs' stiffness parameters. The control and learning mechanisms enable the hexapod robot advanced mobility sensor driven-walking device (AMOS) to achieve variable compliant walking that accommodates different gaits and surfaces. As a consequence, AMOS can perform more energy efficient walking, compared to other small legged robots. In addition, this paper also shows that the tight combination of neural control with tunable muscle-like functions, guided by sensory feedback and coupled with sensorimotor learning, is a way forward to better understand and solve adaptive coordination problems in multilegged locomotion.

Manuscript received January 10, 2015; revised April 23, 2015 and July 11, 2015; accepted September 9, 2015. This work was supported in part by the Emmy Noether Program (DFG) under Grant MA4464/3-1, in part by the Federal Ministry of Education and Research (BMBF) by a grant to the Bernstein Center for Computational Neuroscience II Göttingen under Grant 01GQ1005A (Project D1), and in part by the Strategic Japanese-German Cooperative Program on Computational Neuroscience (JST-DFG) under Grant WO388/11-1. This paper was recommended by Associate Editor H. Qiao.

X. Xiong is with the Bernstein Center for Computational Neuroscience, Institute of Physics III, Georg-August-Universität Göttingen, Göttingen D-37077, Germany, and also with the Institute for Neurorehabilitation Systems, Bernstein Focus Neurotechnology Göttingen, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August-Universität Göttingen, Göttingen D-37075, Germany (e-mail: xiaofeng.xiong@bccn.uni-goettingen.de).

F. Wörgötter is with the Bernstein Center for Computational Neuroscience, Institute of Physics III, Georg-August-Universität Göttingen, Göttingen D-37077, Germany (e-mail: worgott@gwdg.de).

P. Manoonpong is with the Bernstein Center for Computational Neuroscience, Institute of Physics III, Georg-August-Universität Göttingen, Göttingen D-37077, Germany, and also with the Embodied AI and Neurorobotics Laboratory, Center for Biorobotics, Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Odense 5230, Denmark (e-mail: poma@mmmi.sdu.dk).

This paper has supplementary downloadable multimedia material available at http://ieeexplore.ieee.org provided by the authors.

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2015.2479237

Index Terms—Bio-inspired robot control, legged locomotion, muscle model, variable impedance control.

1

I. INTRODUCTION

EGGED animals are capable of adjusting their leg stiffness to accommodate surfaces of variable structural properties [1], [2], thereby leading to adaptive and energy efficient locomotion [3], [4]. They also tune their leg stiffness to accommodate different gaits based on energetic cost [5]-[8]. Neurophysiological studies have revealed that these behaviors arise from the interplays between the nervous systems and the musculoskeletal structures (i.e., muscles and body) of legged animals [9]-[11]. These neuromechanical interactions [12], [13] govern how legged animals achieve adaptive locomotion on different surfaces. For example, cockroaches rely more on their musculoskeletal structures to move over a regular surface. But moving over a more difficult one, they need to resort to the integrations of their nervous systems and musculoskeletal structures [14]. As Bernstein pointed out, the need to control many degrees of freedom (DOFs) is a characteristics of neuromechanical systems [10], [15]. In a cockroach (e.g., Blaberus discoidalis), for instance, there are 220 muscles controlling legs with at least 19 DOFs that contribute to its locomotion [16]. Owing to this, modeling the cooperations within and between different functional components of neuromechanical systems in legged locomotion is a very challenging task (Bernstein's famous "DOFs" problem [10], [15]). Along this paradigm, Full and Koditschek [17] proposed a specific solution where two types of dynamic models (i.e., template and anchor) are used to model legged locomotion with many DOFs. An anchor is a representative model with detailed descriptions of neural circuits, muscles, and joints. Whereas, a template represents the simplest model of locomotion by trimming away the detailed descriptions (e.g., muscles and joints) of the DOFs. Referring to the template, hexapod robots (i.e., robot hexapod (RHex) robots) were designed by Saranli et al. [18]. Each RHex robot having only six DOFs showed unprecedented mobility over different surfaces. Besides, they can also achieve energy efficient locomotion by exploiting passive variable compliant legs. For example, leg compliance of an RHex robot was manually tuned to accommodate its running speeds based on energetic cost [19]. The RHex robot is the best example for a coordination architecture controlling faster movement

2168-2267 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

(e.g., running) where mechanical properties (e.g., leg compliance) must be increasingly well tuned to adapt to different environments [10], [20]. In such a case, more feed-forward and decentralized control can suffice, since feedback control may not be effective due to noisy sensing. By contrast, slower movement (e.g., walking) can heavily count on sensing which allows for more adaptive movement [21], [22]. Similarly, here more feedback and a centralized coordination architecture will be utilized to control our hexapod robot advanced mobility sensor driven-walking device (AMOS) in a neuromechanical manner. Moreover, the modeling of RHex robots is no more than a template, since this template behavior was not embedded within a very detailed model (i.e., anchor). The anchor model is a representative model describing a nervous system, muscles, joints, and legs with many DOFs like in insects [20]. Templates and anchors are more than "simple models" and "complex models." There should be a natural embedding of the template behavior within the anchor [17], [23]. Therefore, an anchor (i.e., detailed) controller for adaptive and energy efficient physical robot locomotion that accommodates different gaits and surfaces remains an important and unresolved problem in a neuromechanical context [10], [15].

To solve this problem, we propose a neuromechanical controller [21] coupled with sensorimotor learning [24], [25] for active tuning [11] of passive properties (e.g., stiffness parameters) of the muscle-like components driving the joints during locomotion. Classical neural control [26] and variable compliance control [27] are generalized and integrated into our neuromechanical controller consisting of a modular neural network (MNN) and several virtual agonist-antagonist mechanisms (VAAMs). The proposed neuromechanical controller [21] simplifies and integrates neural control and Hill's muscle model typically adopted in theoretical neuromechanical models [28], [29], such that the controller is computationally implemented on physical legged robots with many DOFs. Such integration facilitates more adaptive and energy efficient walking on challenging surfaces. For instance, the neuromechanical controller enables AMOS to achieve more energy efficient waking on the challenging surfaces [21], compared to the adaptive neural controller in [22] and [30]. Such energy efficient walking can be also achieved by passive or active compliance control. Passive compliance control is typically regarded as the integration of actuators and viscoelastic mechanics [31]. Such control, however, leads to structural and sensory complexities that cause bulky and energy-inefficient legged robots with many DOFs [32]. By contrast, our neuromechanical controller solves these problems by using virtual muscle-like mechanisms (i.e., VAAMs), which can be applied to variable compliance control of small legged robots with many DOFs. Moreover, the integration of the VAAMs and a proximo-distal gradient results in more stable compliant locomotion, compared to classical active compliance control [33], [34]. Active compliance control typically requires force/torque sensing at each joint of legged robots and its control parameters are often adjusted by hand or offline learning [35], [36]. The parameters have to be relearned or manually readjusted when walking on different

surfaces. Therefore, self-adjusting compliance control on a physical legged robot with many DOFs remains an important and unsolved problem in a context of energy efficient walking on different surfaces, which this paper (see Fig. 1) tries to address in a more efficient way. As a result, the work enables our hexapod robot AMOS to achieve more energy efficient walking [i.e., lower costs of transport (COTs), see Fig. 15] than other small legged robots (less than 8 kg [37]), when proper gaits are chosen for walking over different surfaces. These surfaces include loose surfaces (e.g., fine gravel and coarse gravel), an elastic surface (e.g., sponge), and a muddy surface (e.g., grassland).

IEEE TRANSACTIONS ON CYBERNETICS

This paper is an extension of [21], [30], and [38]. In [30], the MNN was developed to only generate reactive behaviors and omnidirectional walking. In [38], we proposed the musclelike mechanisms (i.e., VAAMs) for robotic compliant joint control. There, we also investigated muscle-like functions and how to vary compliant joint motions via the manual adjustment of the stiffness parameters of the passive elements of the VAAMs, but excluded walking. In [21], we integrated the MNN and VAAMs into neuromechanical control of energy efficient hexapedal walking, in which there is only one specific gait with the manual adjustment of the stiffness parameters of the VAAMs for walking on different surfaces and surface classification. The new contributions of the work, thus, include the following.

- Development of sensorimotor learning (see Fig. 1) for self-adjusting the stiffness parameters of the VAAMs that adapts hexapedal walking to nine insect-like gaits and four challenging surfaces.
- Combination of the muscle-like mechanisms (VAAMs) and sensorimotor learning showing a simple but effective way to achieve adaptive variable compliant joint motions without complex sensory systems and (physical) compliant components.
- Integration of VAAMs with a proximo-distal gradient to remove locomotor instabilities under active compliance control.
- Neuromechanical control coupled with sensorimotor learning providing a way forward to model and control adaptive and energy efficient legged locomotion with many DOFs.
- Investigations on adaptive leg compliance for different gaits and energy efficient walking on different surfaces.
- 6) A better understanding of interactions between neuromechanical control, sensorimotor learning, sensory force feedback, and the environment under adaptive locomotion.

II. NEUROMECHANICAL CONTROLLER COUPLED WITH SENSORIMOTOR LEARNING

A. Overview

We include the feed-forward and feedback pathways into our neuromechanical controller (see Fig. 1). For the feedforward pathways, the controller not only consists of feedforward control via descending commands (i.e., S, N_i , and O_i) from a neural circuit to muscle-like components and body

XIONG et al.: ADAPTIVE AND ENERGY EFFICIENT WALKING IN A HEXAPOD ROBOT

Fig. 1. Neuromechanical control coupled with sensorimotor learning applied to the hexapod robot AMOS. Via neural outputs N_i (i = 1, 2, ..., 18), a neural circuit activates the muscle-like components that generate position commands (i.e., O_i) to move the leg joints of AMOS. The legs then interact with the environment, which produces force feedback (i.e., $F_{m,1}^{ext}$) (m = 1, 2, ..., 6). Besides, six forward models predict expected force feedback (i.e., $F_{m,1}^{ext}$) of the legs based on the outputs of the neural network. Using $F_{m,1}^{ext}$ and $F_{m,1}^{p}$ as the inputs, 12 dual-rate learning processes actively tune 12 stiffness parameters (i.e., K_j , j = 7, 8, ..., 17, 18) of muscle-like components driving 12 joints. There are three ways of generating position commands O_i driving the joints: feed-forward neural control for proximal joints (see \bigcirc), combining feed-forward neural control and tendon-like compliance for intermediate joints, and tendon-like compliance for distal joints (see (2)). Interestingly, these three ways are comparable to a proximo-distal gradient [45]–[47] (see text for details).

mechanics, but also includes six forward models [39] for predicting force sensing (i.e., $F_{m,1}^p$) of the six legs. In the feedback pathway, there is force sensing (i.e., $F_{m,1}^{ext}$) at the end effectors of the legs. Using $F_{m,1}^p$ and $F_{m,1}^{ext}$ as the inputs, 12 dual-rate learning processes can actively tune the stiffness parameters (i.e., K_j) of the muscle-like components driving 12 joints of the legs. This leads to variable compliant leg motions over different surfaces. Actively tuning mechanical properties (e.g., joint stiffness) is an important characteristic of animal locomotion [11], [40]–[42]. For example, the tunable mechanical properties of insect legs can help its locomotion over rough terrain [14], [43], [44].

In addition to neuromechanical interactions, studies of leg muscle architecture [48] and function [49]-[51] suggest that a proximo-distal gradient of muscle function and neural control exists, which reflects different control strategies for the joints [45]–[47], [52], [53]. Following the gradient, proximal joints are under feed-forward neural control, and are rarely sensitive to changes in loading during stance. By contrast, distal joints are more sensitive to loading, and are basically driven by tendons. This proximo-distal gradient enhances locomotor stability of legged animals on rough terrain [47], [54], [55]. Based on the gradient, the contractile elements (CEs) and passive elements of the VAAMs emulate feed-forward neural control [14] and compliance of tendons [56], respectively. The proximal joints [i.e., thoraco coxal (TC) joints] of the hexapod robot are coordinated only by neural outputs (see ① in Fig. 1). Whereas its distal joints [i.e., femur tibia (FTi) joints] are driven only by the passive elements emulating the compliance of tendons (see (2) in Fig. 1). The experimental results show that such a setup enables the hexapod robot to achieve more stable walking on rough surfaces (e.g., gravels). The setup enhances stability of legged robot locomotion under active compliance control which generally leads to locomotor instabilities [57], [58].

Fig. 2. MNN. There are three different neuron groups: input neuron (*S*), hidden neurons (H_{1-24}) , and output neurons (N_{1-18}) . The input neuron is used to control walking patterns of the hexapod robot AMOS. The hidden neurons are divided into three modules: CPG, PSM, and VRMs, which have different functionalities (see texts for details). All connection strengths together with bias terms are indicated by the small numbers except some parameters of the VRMs (a = 1.7246, b = -2.48285, and c = -1.7246). Delays λ_L and λ between output neurons are set to 48 and 16 time steps, respectively. Abbreviations are: $\text{TR}(L)_{1,2,3} = \text{TC}$ joints of the right(left) front, middle, hind legs, $\text{CR}(L)_{1,2,3} = \text{FT}$ joints of the right(left) front, middle, hind legs, $\text{RR}(L)_{1,2,3} = \text{FT}$ joints of the right(left) front, middle, hind legs, R(F, M, H) = right (front, middle, hind) leg, L(F, M, H) = left (front, middle, hind) leg.

In the following, we describe three above introduced components of our system.

- A neural circuit which produces the commands to coordinate joint motions and to change gaits based on energetic cost.
- Biomechanical components consisting of muscle-like components and a bio-inspired body. Walking systems particularly require an adaptive muscle model where its parameters can be easily and quickly tuned to achieve proper compliant joint motions.
- 3) Sensorimotor learning which can predict sensory consequences of actions and actively tune compliance of joint motions; thereby enabling walking systems to accommodate different gaits and deal with different surfaces. The details of each component are described below.

B. Neural Circuit: Modular Neural Network

Our MNN is a biologically-inspired hierarchical neural controller [59], [60]. The MNN generates signals for interleg and intraleg coordination of the six-legged robot AMOS. Each leg has a TC joint allowing forward and backward motions, a coxa trochanteral (CTr) joint allowing elevation and depression motions, and an FTi joint allowing extension and flexion motions. The MNN consists of a central pattern generator [CPG [61], see Fig. 2(I)], a phase switch module [PSM, see Fig. 2(II)], and two velocity regulating modules [VRMs, see Fig. 2(III)]. All neurons of the MNN are modeled as discrete-time, nonspiking neurons. The activation H_i of each neuron develops according to

$$H_i(t) = \sum_{j=1}^m W_{ij} \, o_j(t-1) + B_i, \quad i = 1, \dots, m$$
 (1)

4

IEEE TRANSACTIONS ON CYBERNETICS

where *m* denotes the number of units, B_i is an internal bias term (i.e., stationary input) to neuron *i*, and W_{ij} is the synaptic strength of the connection from neuron *j* to neuron *i*. The output o_i of every neuron of the MNN is calculated using a hyperbolic tangent (tanh) transfer function, i.e., $o_i = \tanh(H_i), \in [-1, 1]$. The weights W_{ij} are manually designed, except weights *a*, *b*, and *c* which are obtained by back-propagation learning [see Fig. 2(III)]. More details of determining the weights W_{ij} , we refer to [30].

The CPG consists of only two neurons with full connectivity [61] [see Fig. 2(I)], where B_1 and B_2 are set to 0.01. The weights W_{12} and W_{21} are given by

$$W_{12}(S) = 0.18 + S, W_{21}(S) = -0.18 - S$$
 (2)

where $S \in [0.01, 0.18]$ is the modulatory input determining the speed of the legs, which increases with increasing S.

The PSM is a generic feed-forward network consisting of three hierarchical layers with ten hidden neurons (i.e., $H_3 - H_{12}$) [see Fig. 2(II)]. The outputs of the PSM are projected to the FTi [i.e., $F(R, L)_{(1,2,3)}$] and CTr [i.e., $C(R, L)_{(1,2,3)}$ motor neurons [see Fig. 2(IV)], as well as to the neurons H_{13} and H_{14} of the two VRMs [see Fig. 2(III)]. The VRMs are feed-forward networks projecting their outputs to the TC motor neurons $T(R, L)_{(1,2,3)}$ [see Fig. 2(IV)]. Delays λ_L and λ between the motor neurons are fixed [see Fig. 2(IV)]. The outputs N_{1-18} of the motor neurons are used to activate the muscle-like components to drive AMOSs legs. Here, we show how N_{1-18} enable the legs to perform a fast wave gait [60] (see Fig. 1 in supplementary material). In addition, nine gaits (see Fig. 2 in supplementary material) are achieved by changing the modulatory input S [see (2)] of the MNN (see Fig. 2). More details of the MNN can be seen in [30].

C. Biomechanical Components

1) Muscle-Like Component—Virtual Agonist—Antagonist Mechanism: The VAAM consists of a pair of agonist and antagonist mechanisms [see Fig. 3(a)]. It produces active and passive forces using its CEs and parallel elements (PEs) [see Fig. 3(b)]. In Fig. 3(a), a physical joint is driven by a VAAM (i.e., M1 and M2). Virtual means that the joint, physically driven by a standard servo motor, imitates muscle-like behaviors as if it were driven by a pair of physical agonist and antagonist muscles. The joint actuation relies on the CEs, while the PEs govern joint compliance.

The parallel elements are modeled as spring-damper systems [see Fig. 3(b)] in terms of a Voigt muscle model [62]. The active forces produced by the CEs are approximated by the product of the neural activity N_j and the activity strengths $i_{(1,2)}$. More details of mathematically modeling the PEs and CEs can be seen in [63]. We apply Euler's law to the rotation of the joint *P* [see Fig. 3(a)]. The motion equation of the joint *P* is given by

$$I\ddot{\theta} = \underbrace{f^{\text{ext}}\sin(\theta)L}_{\text{torque by } f^{\text{ext}}} + \left[\underbrace{rN_j}_{\text{torque by CE}_{(1,2)}} - \underbrace{r(2K\theta r + 2D\dot{\theta}r)}_{\text{torque by PE}_{(1,2)}}\right]. \quad (3)$$

Fig. 3. VAAM for joint control interacting with the ground surface. (a) Physical joint *P* is driven by a VAAM (i.e., *M*1 and *M*2) with the lengths L_1 and L_2 . The interaction results in an external force f^{ext} , which drives the joint *P* with radius *r* via the shank with length *L*. f^{ext} is sensed by a force sensor (i.e., *O*), and f^{\perp} is the amount of f^{ext} directly perpendicular to the position of the joint *P*. θ is the rotational angle of the joint *P* relative to the absolute frame *Z*. (b) Agonist and antagonist mechanisms consist of contractile and parallel elements (CE_(1,2) and PE_(1,2)). PE_(1,2) are spring-damper systems producing passive forces. CE_(1,2) generate active forces depending on the neural activity N_j and the activity strengths $i_{(1,2)}$ (i.e., $i_{(1,2)} \in [-1, 1]$). The neural activity N_j is one of the outputs N_{1-18} of the MNN [see Fig. 2(IV)].

Equation (3) governs the angle θ of a physical joint driven by the VAAM that is activated by the output N_j ($j \in \mathbb{Z}_{[1,18]}$) of the MNN. The joint angle θ and joint velocity $\dot{\theta}$ in (3) are not from sensory feedback but calculated using fourthorder Runge–Kutta. In principle, this bio-inspired compliant joint control approach (i.e., the VAAM) shares a connection to classical impedance control approaches [64] in terms of spring-damper based compliance. However, it is a biological model where biological muscle functions (e.g., brakes [65]) can be easily emulated by changing stiffness and damper parameters [i.e., *K* and *D* in (3)] [38]. Here, through using sensorimotor learning (see Section II-E for details), *K* will be adjusted in an online manner while *D* will be fixed during walking. More advantages of the VAAM model are described in [21].

2) Bio-Inspired Body-Hexapod Robot AMOS: Here we use a hexapod robot [i.e., AMOS, 5.4 kg weight, see Fig. 4(a)] as our experimental platform. It has six three-jointed legs (see Fig. 3 in supplementary material), and each leg emulates the morphology of a cockroach leg [66]. Every leg has a TC joint allowing forward and backward motions, a CTr joint allowing elevation and depression motions, and an FTi joint allowing extension and flexion motions (see Fig. 3 in supplementary material). Each joint is physically driven by a standard servo motor (i.e., HSR-5990TG). There is a force sensor (i.e., FS Series Force Sensor) used for detecting an analog force signal at each leg [see fc_{1-6} in Fig. 4(b)]. A current sensor, installed inside the body of the hexapod robot, is used to measure the electrical current supplied to all motors of the robot. Here, the current sensor signal is used to calculate power consumption during walking. The sensory data are transmitted via an RS232 serial connection to an external PC on which the controller is

Fig. 4. Hexapod robot AMOS. Its three-jointed legs mimic leg morphology of an insect (see Fig. 3 in supplementary material). (a) AMOS and its sensors. $fc_{(1-6)}$ are force sensors. (b) Outputs O_{0-18} controlling the 19 joints of AMOS when receiving analog signals f_{1-6}^{ext} , which are detected by the force sensors at the legs. Abbreviations are: L(1,2,3) = Left (Front, Middle, Hind) leg. R(1,2,3) = Right (Front, Middle, Hind) leg.

implemented. The final motor commands of the controller are sent to the robot also via the serial connection.

D. Neuromechanical Control: Combining Neural Circuit and Biomechanical Components

The outputs $O_{1-18} \in [-1, 1]$ of the neuromechanical controller are linearly scaled and transmitted to control the positions of the standard servo motors driving the 18 joints of the hexapod robot [see Fig. 5(b) in supplementary material]. Note that the command O_0 here is set to a constant value (i.e., $O_0 = 0$) for controlling the backbone joint to the middle position. For joint control (i.e., O_{1-18}), different control strategies are applied to swing and stance phases, like virtual model controllers [33], [34].

1) Swing Phase: When a leg is in swing phases (i.e., $f_i^{\text{ext}} = 0, i = 1, 2, ..., 5, 6$), the outputs $N_{(i,i+6,i+12)}$ of the MNN [see Fig. 2(IV)] are linearly transformed into the outputs $O_{(i,i+6,i+12)}$ controlling the TC, CTr, and FTi joints. $O_{(i,i+6,i+12)}$ satisfy

$$\begin{bmatrix} O_i, O_{i+6}, O_{i+12} \end{bmatrix}^T = \begin{bmatrix} 0.4N_i, 0.15N_{i+6}, -0.02N_{i+12} \end{bmatrix}^T - \begin{bmatrix} 0.05, -0.86, 0.43 \end{bmatrix}^T, \ i \in \mathbb{Z}_{[1,6]}.$$
(4)

The details of (4) can be seen in [21, Eqs. (A.1)–(A.3)]. Note that the last values of the outputs $O_{(i,i+6,i+12)}$ of the swing phase are kept and transferred to the initial joint angles of the

following stance phase. This leads to smooth switches from swing to stance phases (see Fig. 6 in supplementary material).

2) Stance Phase: The TC joint of the leg allowing only horizontal motion is not affected by the PEs of the VAAM since there is only detection of vertical foot force at the end effector of the leg. As a consequence, the TC joint is driven by the CEs of the VAAM that simulate feed-forward neural control. By contrast, the CTr and FTi joints, contributing to vertical motion of the leg, can be influenced by vertical foot force. Based on the VAAMs, we test nine possible setups (see Table I in supplementary material) to control the CTr and FTi joints in a physical simulator (i.e., LPZROBOTS simulator [67]). The simulation results show that the setup S2 leads to coordinated movement and stable locomotion with the smallest body oscillation (see Fig. 4 in supplementary material). The setup S2 is as follows: each TC joint (i.e., proximal joint) is purely controlled by the CEs of the VAAM (i.e., pure actuation), each CTr joint (i.e., intermediate joint) is governed by the CEs and PEs of the VAAM (i.e., combination of actuation and compliance), and each FTi joint (i.e., distal joint) is driven by the PEs (i.e., PE₁ and PE₂) of the VAAM (i.e., pure compliance) (see more details in Fig. 5 of supplementary material). Interestingly, this setup also complies with a proximo-distal gradient revealed by biological studies on three-jointed leg locomotion [45], [53], [68]. These studies show that proximal joints mainly act as actuation while distal joints serve as compliance in legged animal locomotion. Such passive compliance and active actuation make the VAAM different from virtual model control (VMC), which only contains a virtual passive elements (e.g., spring) attached to the robot [33] (see Fig. 5). In contrast to VMC controllers [34], the VAAM not only includes virtual passive elements to produce passive forces, but also integrates virtual CEs that generate active forces driven by neural control. The VAAM control is, thus, more strongly bio-inspired by integrating neural control with muscle-like functions, compared to VMC controllers. As a result, the VAAM control enables AMOS to not only achieve more stable walking under active compliance control (see Fig. 6), but also easily emulate muscle-like functions (e.g., brakes and springs) [38].

The outputs O_{1-18} of the proposed neuromechanical controller are calculated as follows.

All TC joints are controlled only by $CE_{(1,2)}$ of the VAAM. The matrix of the outputs of the TC motor neurons is $T_{6\times 1} = [N_1, N_2, \dots, N_6]^T$ [see Fig. 2(IV)]. O_j is given by $(j \in \mathbb{Z}_{[1,6]})$

$$O_i = 0.4T_{i,1} - 0.05. \tag{5}$$

The details of (5) can be seen in [21, Eq. (A.4)].

Each CTr joint is driven by $PE_{(1,2)}$ and $CE_{(1,2)}$ of the VAAM. The matrix $\theta 2_{6\times 1}$ of the CTr angles is the sum of the Hadamard products (see [63, Eqs. (17) and (18)])

$$I\ddot{\theta}_{6\times1}^{2} = F_{6\times1}^{\text{ext}} \circ \left(L_{2}\cos(\theta_{6\times1}) + \vec{V}_{16\times1} \right) \\ + \left[rC_{6\times1} - 2r^{2} \left(K2_{6\times1} \circ \theta_{26\times1} \right) \\ + D2_{6\times1} \circ \dot{\theta}_{26\times1} \right) \right].$$
(6)

Fig. 5. Schematic of VMC and VAAM control. (a) Virtual model controller [33] that only exploits a virtual passive element (e.g., spring) attaching the body to the end effector. (b) VAAM controller that uses the virtual CEs and passive elements, see Fig. 3. The controller is based on a proximo-distal gradient (see more details in Fig. 5 of supplementary material).

The angles $\theta 2_{m,1}$ [$m \in \mathbb{Z}_{[1,6]}$, see $\theta 2_{6\times 1}$ in (6)] of the CTr joints are linearly transformed into their outputs O_j (see more details in Fig. 5 of supplementary material). O_j is given by $(j \in \mathbb{Z}_{[7,12]})$

$$O_j = -0.8\theta 2_{m,1} - 0.38, m = j - 6.$$
⁽⁷⁾

The details of (7) can be seen in [21, Eq. (A.5)].

Each FTi joint is driven only by $PE_{(1,2)}$ of the VAAM (see more details in Fig. 5 of supplementary material). The FTi angle matrix $\theta 1_{6\times 1}$ is the sum of the Hadamard products (see [63, Eqs. (13)–(15)])

$$I\dot{\theta 1}_{6\times 1} = F_{6\times 1}^{\text{ext}} \circ \sin(\theta 1_{6\times 1})L_1 - 2r^2 (K 1_{6\times 1} \circ \theta 1_{6\times 1} + D 1_{6\times 1} \circ \dot{\theta 1}_{6\times 1}).$$
(8)

The angles $\theta 1_{m,1}$ [$m \in \mathbb{Z}_{[1,6]}$, see $\theta 1_{6\times 1}$ in (8)] of the FTi joints can be linearly transformed into their outputs O_j (see more details in Fig. 5 of supplementary material). O_j is given by $(j \in \mathbb{Z}_{[13,18]})$

$$O_j = 0.92\theta 1_{m,1} + 0.12, m = j - 12.$$
(9)

The details of (9) can be seen in [21, Eq. (A.6)].

Fig. 6. Vertical positions of center of mass of the hexapod robot AMOS. The experiments are conducted in the physical simulator LPZROBOTS [67]. The VAAM control (setup S2, see Table I in supplementary material) enables AMOS to walk stably (smaller body oscillations), compared to VMC.

E. Sensorimotor Learning for Adaptive Compliant Joint Motions

The adaptive compliant joint motions of AMOS are achieved by actively adjusting the stiffness parameters $K_{16\times1}$ and $K_{26\times1}$ [see (6), (8)] of the passive elements of the VAAMs driving the FTi and CTr joints. Here, we apply sensorimotor learning for online adjusting $K_{16\times1}$ and $K_{26\times1}$ at every time step Δt (i.e., $\Delta t = 0.019$ s). For each leg, there are two dual-rate learning processes and a forward model [see Fig. 7(a) and (b)] for the CTr and FTi joints. The forward models use the outputs [i.e., $O_m(t)$] controlling the TC joints to predict foot force signals [i.e., $F_{m,1}^p(t)$, m = 1, 2, ..., 5, 6]. Specifically, $F_{m,1}^p(t)$ will gradually increase to 1 when $O_m(t)$ is decreasing [see $F_{4,1}^p(t)$ and $O_4(t)$ in Fig. 8(a)]. $F_{m,1}^p(t)$ is given by

$$\begin{aligned}
\mathcal{F}_{m,1}^{\rho}(t + \Delta t) &= 0.2G_{m,1}(t) + 0.8F_{m,1}^{\rho}(t) \\
G_{m,1}(t) &= \begin{cases}
1, & O_m(t + \Delta t) < O_m(t) \\
0, & O_m(t + \Delta t) > O_m(t).
\end{aligned}$$
(10)

The matrix $e_{6\times 1}(t)$ of errors between real and predicted foot force signals is

ŀ

$$e_{6\times1}(t) = F_{6\times1}^{\text{ext}}(t) - F_{6\times1}^{p}(t)$$

$$e_{6\times1}(t) = [e_{1}(t), e_{2}(t), \dots, e_{5}(t), e_{6}(t)]^{T}$$
(11)

where $F_{6\times1}^{\text{ext}}(t)$ is the matrix of the real foot force signals, i.e., $F_{6\times1}^{\text{ext}}(t) = f_{1-6}^{\text{ext}}(t)$ (see Fig. 4). $F_{6\times1}^p(t)$ is the matrix of the predicted foot force signals, i.e., $F_{6\times1}^p(t) = f_{1-6}^p(t)$.

For reducing the errors [see $e_{4,1}(t)$ in Fig. 8(b)], the processes adjust the stiffness parameters [e.g., $K1_{4,1}(t)$] of the PEs driving the FTi and CTr joints in each leg [see Fig. 7(a)]. Each learning process consists of a fast learner and of a slow learner. Both learners are modeled as linear systems acting in parallel. The fast one learns compensating the error more quickly, is indicated by a higher learning rate, i.e., $B1_f > B1_s$. Whereas, the slow one retains previous states much better, is indicated by a high retention factor, i.e., $A1_f < A1_s$. Therefore, the XIONG et al.: ADAPTIVE AND ENERGY EFFICIENT WALKING IN A HEXAPOD ROBOT

Fig. 7. Sensorimotor learning for stiffness parameters $K1_{m,1}$ and $K2_{m,1}$. $K1_{m,1}$ and $K2_{m,1}$ (m = 1, 2, ..., 6) are stiffness parameters of the passive elements driving the FTi and CTr joints of the AMOSs legs. For each leg, there are two dual-rate learning processes for adjusting stiffness parameters (e.g., $K1_{4,1}$ and $K2_{4,1}$) by using expected and real foot force signals (e.g., $F_{4,1}^p$ and $F_{4,1}^{ext}$). The expected foot force signal (e.g., $F_{4,1}^p$) is predicted by a forward model based on an output (e.g., O_4) controlling the TC joint. Each dual-rate learning process consists of a fast learner and of a slower learner acting in parallel. (a) Dual-rate learning process for stiffness parameters $K1_{m,1}$. The parameters of the two learners are set as: $A1_f = 0.59$, $A1_s = 0.992$, $B1_f = 0.378$, and $B1_s = 0.036$. (b) Dual-rate learning for stiffness parameters $K2_{m,1}$. The parameters of the two learners are set as: $A2_f = 0.59$, $A2_s = 0.992$, $B2_f = 0.882$, and $B2_s = 0.084$.

matrix $K1_{6\times 1}(t)$ of stiffness parameters for the FTi joints is given by

$$K1_{6\times1}^{f}(t+\Delta t) = A1_{f}K1_{6\times1}^{f}(t) + B1_{f}e_{6\times1}(t)$$

$$K1_{6\times1}^{s}(t+\Delta t) = A1_{s}K1_{6\times1}^{s}(t) + B1_{s}e_{6\times1}(t)$$

$$K1_{6\times1}(t+\Delta t) = K1_{6\times1}^{f}(t+\Delta t) + K1_{6\times1}^{s}(t+\Delta t)$$
(12)

where $K1_{m,1}^{J}(t + \Delta t)$ are the outputs of fast learners, and $K1_{m,1}^{s}(t + \Delta t)$ are the outputs of slow learners. Note that the value of $A1_{f}$ and $A1_{s}$ are from [24], and $B1_{f}$ and $B1_{s}$ are empirically chosen [see all values in Fig. 7(a)].

Similarly, the matrix $K2_{6\times 1}(t)$ of stiffness parameters [see Fig. 7(b)] for the CTr joints is given by

$$K2_{6\times1}^{J}(t+\Delta t) = A2_{f}K2_{6\times1}^{J}(t) + B2_{f}e_{6\times1}(t)$$

$$K2_{6\times1}^{s}(t+\Delta t) = A2_{s}K2_{6\times1}^{s}(t) + B2_{s}e_{6\times1}(t)$$

$$K2_{6\times1}(t+\Delta t) = K2_{6\times1}^{f}(t+\Delta t) + K2_{6\times1}^{s}(t+\Delta t)$$
(13)

where $K2_{m,1}^{f}(t + \Delta t)$ are the outputs of fast learners, and $K2_{m,1}^{s}(t + \Delta t)$ are the outputs of slow learners. Note that the value of $A2_{f}$ and $A2_{s}$ are from [24], and $B2_{f}$ and $B2_{s}$ are empirically chosen [see all values in Fig. 7(b)]. Equations (12) and (13) are written in terms of time *t* different from [24] and [25] formulated according to trial number *n*.

III. EXPERIMENTS

A. Sensorimotor Learning for Self-Adjusting Stiffness Parameters

For each leg, there are two learning processes coupled with a forward model (see Fig. 7) for adjusting the stiffness parameters (e.g., $K1_{4,1}$ and $K2_{4,1}$). The video of the experiment can be seen at http://www.youtube.com/watch?v=B0v5D9yiRH4. At the left front leg, for example, there are two outputs (i.e., $K2_{4,1}^J$ and $K2_{4,1}^s$) of fast and slow learners acting in parallel, which contribute to the stiffness parameter $K2_{4,1}$ [see Fig. 8(c)]. One can see that the fast one learns $K2_{4,1}^{J}$ more rapidly, which leads to smaller oscillations [see the green dashed line in Fig. 8(c)]. By contrast, the slow one retains $K2_{4,1}^s$ better, thereby leading to convergence [see the red dashed line in Fig. 8(c)]. This is because the retention factor $A2_f = 0.59$ of the fast learner is lower than $A2_s = 0.992$ of the slow learner [see (13)]. Moreover, the fast learner is more sensitive to perturbations (i.e., stance phases) after learning (see Fig. 9), compared to the slow learner. This is because the learning rate $B2_f = 0.882$ of the fast learner is higher than $B2_s = 0.084$ of the slow learner [see (13)]. The combination of the slow and fast learners enables the stiffness parameters (e.g., $K2_{4,1}$) to achieve global convergence and local oscillatory stiffness response [see Figs. 8(c) and 9], which lead to stable and adaptive compliant hexapedal walking on challenging surfaces. Furthermore, the stiffness parameters (e.g., $K2_{4,1}$) during swing phases

Fig. 8. Sensorimotor learning for adjusting stiffness parameter $K2_{4,1}$. Here the gait is fast caterpillar (i.e., the modulatory input S = 0.10). (a) Forward model. The output $O_4(t)$ controlling the TC joint is applied to predict the foot force signal $F_{4,1}^p(t)$ [see (10)]. (b) Contact forces. $F_{4,1}^{ext}(t)$ and $F_{4,1}^p$ are the real and predicted contact forces. (c) Learning the stiffness parameter $K2_{4,1}$. $K2_{4,1}$ is the sum of the outputs (i.e., $K2_{4,1}^f$ and $K2_{4,1}^s$) of a fast learner and a slow learner using the error $e_{4,1}$ between $F_{4,1}^{ext}$ [see (13)]. The adjustment of stiffness parameter $K1_{4,1}$ driving the FTi joint in the left front leg is shown in Fig. 10(a). (d) O_{10} , and O_{16} are the outputs controlling the positions of the CTr and FTi joints in the left front leg.

are higher than the ones during stance phases (see Fig. 9), since they (during the swing phases) are kept as the stiffness parameters from the previous stance phases. Note that sensorimotor learning [see (10)–(13)] is not applied to adaptively control the joints during swing phases, because only feedforward neural control [i.e., no stiffness parameters $K(1, 2)_{m,1}$, see (4)] is used for joint control during swing phases. During stance phases, the stiffness parameters (e.g., $K2_{4,1}$) initially decrease and only later increase (see Fig. 9). This is because the muscle-like mechanisms (i.e., VAAMs) initially soften the joints to absorb the impact of external loads, and later stiffen them to obtain more force for foothold and moving forward. Similarly, the PEs of the VAAMs also soften and stiffen the FTi joints during stances phases [see Fig. 10(a)]. In other words, the VAAMs stiffen joints when the external load increases (i.e., stance phases). This property of the VAAMs is comparable to that of biological muscles, which become stiff when the external load increases [10], [69]. Note that AMOS had difficulties to walk on all experimental surfaces when only fast or slow learners were used to tune stiffness parameters $K1_{6\times 1}$ and $K2_{6\times 1}$. The video of the experiment can be seen at http://www.youtube.com/watch?v=Lq22FibYLE4. This is because the slow or fast learners allow only for global convergences or local oscillatory stiffness responses (see Fig. 9). Whereas combining the slow and fast learners, the dual-rate learners enable $K1_{m,1}$ and $K2_{m,1}$ to achieve global convergences [see Fig. 8(c)] and local oscillatory stiffness responses (see Fig. 10), thereby leading to stable and adaptive walking on different surfaces. Moreover, the ranges of the stiffness parameters $K1_{m,1}$ and $K2_{m,1}$ vary between hind and nonhind legs. Lower $K1_{(3,6),1}$ and higher $K2_{(3,6),1}$ (see Fig. 10) press the hind legs more down, which enhance locomotion stability, compared to the front and middle legs. This is because the mass of AMOS mainly concentrates on its hind part. Furthermore, the values of $B(1,2)_f$ and $B(1,2)_s$ are empirically chosen to produce proper stiffness parameters $K1_{m,1}$ and $K2_{m,1}$ (see Fig. 7), which lead to appropriate (e.g., smooth) compliant joint motions of AMOS. For example, the compliant CTr joint motions are smoother (see $K2_{m,1} = 9.0$ in Fig. 11) when the parameters $K2_{m,1}$ of

Fig. 9. Sensorimotor learning for adjusting stiffness parameter $K2_{4,1}$ during a swing and stance phases (see more details in Fig. 8). The figure is clipped from Fig. 8(c).

Fig. 10. Stiffness parameters $K1_{1-6,1}$ and $K2_{1-6,1}$ after learning. Here the gait is fast caterpillar (i.e., the modulatory input S = 0.10). Stiffness parameters (a) $K1_{1-6,1}$ of the VAAMs that drive the FTi joints and (b) $K2_{1-6,1}$ of the VAAMs that drive the CTr joints.

their driving VAAMs are self-adjusted between 6.5 and 13.5 [see Fig. 10(b)].

B. Adaptive Leg Compliance for Different Gaits

Actively adjusting stiffness parameters $K_{16\times 1}$ and $K_{26\times 1}$ allows AMOS to accommodate different gaits. AMOS, for instance, walked on fine gravel when slow wave (i.e., S = 0.02) and fast caterpillar (i.e., S = 0.10) gaits were chosen [see Fig. 2(a) and (e) in supplementary material], respectively. The video of the experiments can be seen at http://www.youtube.com/watch?v=tmqr65qIOTY. One can

Fig. 11. Smoothness of the compliant CTr joint motions that varies with the stiffness parameters $K2_{m,1}$. Note that changing initial joint angles $\theta 2_{m,1}$ does not affect the smoothness of the compliant CTr joint motions (see Fig. 6 in supplementary material).

Fig. 12. Adjustments of $K1_{4,1}$ and $K2_{4,1}$ for different gaits. AMOS walked on fine gravel where its gait was chosen as slow wave (i.e., S = 0.02) and fast caterpillar (i.e., S = 0.10) gait, respectively. Sensorimotor learning enables AMOS to self-adjust stiffness parameters $K1_{4,1}$ and $K2_{4,1}$ for the left front leg. (a) TC joint outputs O_4 . (b) CTr joint outputs O_{10} . (c) Stiffness parameters $K2_{4,1}$ determine the compliance of CTr joint motions of the left front leg. (d) FTi joint outputs O_{16} . (e) Stiffness parameters $K1_{4,1}$ determine the compliance of FTi joint motions of the left front leg. (f) Foot contact force errors $e_{4,1}$.

see that AMOS softens and stiffens its CTr and FTi joints during stance phases, no matter which gait is chosen [see the gray area in Fig. 12(c) and (e)]. Moreover, the slow wave gait enables CTr and FTi joints to achieve stiffer motions that result from larger $K1_{m,1}$ and $K2_{m,1}$ [see green dashed circles in Fig. 12(c) and (e)], compared to the fast caterpillar gait. That is, AMOS stiffens the legs during stance phases when the speed of its leg motion is reduced from the fast gait to the slow gait. This result is comparable to the finding of physiological experiments, which had shown that at

Fig. 13. Adjustments of $K_{14,1}$ and $K_{24,1}$ for different surfaces. An intermixed gait (i.e., modulatory input S = 0.12) was chosen for AMOS to walk on fine and coarse gravel, respectively. Sensorimotor learning enables AMOS to self-adjust stiffness parameters $K_{14,1}$ and $K_{24,1}$ for the left front leg. (a) TC joint outputs O_4 . (b) CTr joint outputs O_{10} . (c) Stiffness parameters $K_{24,1}$ determine the compliance of the CTr joint motions of the left front leg. (d) FTi joint outputs O_{16} . (e) Stiffness parameters $K_{14,1}$ determine the compliance of the FTi joint motions of the left front leg. (f) Foot contact force errors $e_{4,1}$.

low speed animals walk by vaulting stiffer legs [28], [70]. Conversely, AMOS softens its legs when the speed of its leg motion is increased from the slow gait to the fast one. This finding may reflect a control strategy of polyped (i.e., > two legs) locomotion where polyped systems soften the legs owing to energy efficiency requirements [3]. Our experimental results also show that the fast caterpillar gait (i.e., S = 0.10) allows AMOS to achieve softer leg motions which lead to more energy-efficient locomotion on all experimental surfaces (see COTs in Fig. 14), compared to the slow wave gait (i.e., S = 0.02). Note that errors during swing phases result from delayed feedback, which makes the phase differences between the real and predicted forces (see Fig. 17). However, in this paper, the stiffness parameters are adjusted only to reduce the errors during stance phases. The large errors during swing phases are currently ignored for adjusting stiffness parameters. During the swing phases, the stiffness parameters are kept fixed as the stiffness parameters from the previous stance phases.

C. Adaptive Leg Compliance for Walking on Different Surfaces

Actively adjusting stiffness parameters $K1_{6\times 1}$ and $K2_{6\times 1}$ also leads to adaptive locomotion on different surfaces, for example, when an intermixed gait (i.e., modulatory input S = 0.12) was chosen for AMOS to walk on fine and coarse gravel, respectively. On these two surfaces, AMOS joints receive the same outputs¹ of the MNN (see Fig. 2). One can see that the TC joint motions of the left front leg are the same [see Fig. 13(a)] because they are controlled only by feed-forward neural control (i.e., without passive elements). By contrast, CTr and FTi joint motions are different [see Fig. 13(b) and (d)] during stance phases when AMOS walks on fine and coarse gravel, respectively. This is because TC, CTr, and FTi joints act with different roles (i.e., compliance or actuation, see more details in Fig. 5 of supplementary material) for controlling leg motions in stance phases. Moreover, we can see that the CTr and FTi joints are stiffer² [i.e., higher $K1_{4,1}$ and $K2_{4,1}$ values, see Fig. 13(c) and (e)] when AMOS walked on coarse gravel, compared to fine gravel. This makes the legs penetrate more deeply, but also extend more widely into the coarse gravel [see CTr and FTi joint motions in Fig. 13(b) and (d)]. The video of the experiments can be seen at http://www.youtube.com/watch?v=-Du62APFUt0.

D. Energy Efficient Walking

In the previous sections, we show that the proposed neuromechanical controller coupled with sensorimotor learning enables AMOS to produce coordinated and variable compliant joint motions that accommodate different gaits and surfaces. For each surface, nine gaits (see Fig. 2 in supplementary material) were chosen by changing the modulatory input *S* [see (2)] of the MNN (see Fig. 2). The variable compliant joint motions lead to different energy efficiencies of AMOS walking on fine gravel, coarse gravel, elastic sponge (stiffness 0.523 kN/m), and grass land. Typically, the energy efficiency is measured by COT (i.e., specific resistance [18], [76]) as

$$COT = \frac{P_{avg}}{mgv_{avg}}, v_{avg} = \frac{d}{t}$$
(14)

where P_{avg} is average power consumption. mg is the weight of AMOS, i.e., mg = 52.974 N. v_{avg} is its average forward speed when AMOS walks a distance d using time t. For each gait, we repeatedly ran the hexapod robot on each surface until ten successful runs were obtained. For each successful run, the average power consumption P_{avg} is calculated based on the electrical current supplied to all motors of AMOS, which is measured by a current sensor. Low COT corresponds to more energy efficient walking.

Fig. 14 shows COTs when AMOS walked on the four surfaces using the nine gaits. One can see that AMOS achieves more energy efficient walking by using gaits with intermediate leg speeds, compared to a slower leg speed (i.e., modulatory input S = 0.02, the slow wave gait) or a faster leg speed (i.e., S = 0.18, the fast tripod gait). Moreover, different gaits let AMOS consume different energetic costs. For instance, the slow intermixed gait (i.e., S = 0.12) enables AMOS to achieve more energy efficient walking on fine gravel [see Fig. 14(a)] while the fast intermixed gait (i.e., S = 0.14)

¹In this paper, the same modulatory input S of the MNN corresponds to the same neural outputs [i.e., N_{1-18} in Fig. 2(IV)].

²A joint greatly resists the influence of external forces, and is thus "stiff." Whereas, a joint allows external forces to influence its movement easily, and is thus "soft" [75].

Fig. 14. Energy efficiencies of AMOS walking on different surfaces using different gaits. The energy efficiency is measured by COT [i.e., specific resistances, see (14)]. Lower COT corresponds to more energy efficient locomotion. Nine gaits (see Fig. 2 in supplementary material) were chosen for AMOS walking over each experimental surface. (a) COTs on fine gravel. The slow intermixed gait (i.e., S = 0.12) enables AMOS to achieve more energy efficient walking. (b) COTs on coarse gravel. The fast intermixed gait (i.e., S = 0.14) is more energy-efficient for its walking on this surface. (c) COTs on elastic sponge. The slow caterpillar gait (i.e., S = 0.08) is the optimizer gait. (d) COTs on grass land. The fast caterpillar gait (i.e., S = 0.10) allows AMOS to achieve more energy efficient walking.

Fig. 15. COTs of small legged robots. (a) Millirobot enabled diagnostic of integrated circuits [71]. (b) RHex [18]. (c) Harvard ambulatory microrobot² [72]. (d) Dynamic autonomous sprawled hexapod [73]. (e) Gregor I [74]. (f) AMOS.

is an efficient gait for AMOS walking on coarse gravel [see Fig. 14(b)]. The slow (i.e., S = 0.08) and fast (i.e., S = 0.10) caterpillar gaits make AMOS achieve more energy efficient walking on elastic sponge and grass land, respectively [see Fig. 14(c) and (d)]. The video of the experiments can be seen at http://www.youtube.com/watch?v=SrasTYQG8Xk. Integrating neuromechanical control and sensorimotor learning, the adaptive neuromechanical controller (see Fig. 1) enables AMOS to achieve adaptive compliant walking, which effectively accommodates different gaits and surfaces. Such walking is achieved by online adjusting stiffness parameters $K1_{6\times 1}$ and $K2_{6\times 1}$ [see (12), (13)] of the passive elements driving the FTi and CTr joints. Note that all damper parameters $D(1,2)_{m,1}$ [see (6), (8)] were set to 1.0 in all experiments chosen by trial and error. As a result, the adaptive neuromechanical controller (see Fig. 1) reduces COT of AMOSs walking to between 3.4 and 11.7, compared to [21]. Similarly, the adaptive neuromechanical controller allows for lower COT that corresponds to more energy efficient walking [see Fig. 16(a)],

 TABLE I

 TIMES OF STANCE PHASES AND DELAYS VARY WITH S

Modulatory input S	Time of stance phases (s)	Time of delays (s)
0.02	1.82	0.07
0.10	0.77	0.08
0.18	0.56	0.10

compared to the adaptive neural controller from [22]. This is because the adjustable VAAMs of the adaptive neuromechanical controller produce high amplitude and smooth joint outputs during the stance phase [see Fig. 16(b)], which basically stiffen the legs and allow them to penetrate deeply into challenging surfaces (e.g., coarse gravel). By contrast, other neural controllers [30] like the adaptive neural controller [22] cannot achieve this due to the lack of muscle-like mechanisms (e.g., VAAMs). Moreover, the adaptive neuromechanical controller makes AMOS achieve more energy efficient walking (see Fig. 15), compared to other small legged robots (less than 8 kg [37]).

Fig. 16. COTs and CTr joint outputs under the adaptive neuromechanical (see Fig. 1) and neural [22] controllers. The experimental surface is the coarse gravel. (a) COTs. (b) CTr joint outputs O_{10} (with the fast intermixed gait, modulatory input S = 0.14).

Fig. 17. Real and predicted contact forces at the left front leg. Here the slow wave (modulatory input S = 0.02), fast caterpillar (S = 0.10), and fast tripod (S = 0.18) gaits were chosen on fine gravel, respectively. All delay times are not larger than 0.10 s, although they increase with the increasing *S*. See the delay times between the real and predicted contact forces at Table I.

IV. CONCLUSION

The proposed method (see Fig. 1) enables the six-legged robot AMOS to achieve variable compliant joint motions with self-adjustments that accommodate different gaits and surfaces. These motions are generated by online tuning 12 stiffness parameters (i.e., $K1_{m,1}$ and $K2_{m,1}$, m = 1, 2, ..., 6) of the muscle-like mechanisms (i.e., the VAAMs) driving 12 joints. This online tuning is achieved by sensorimotor learning

(see Fig. 1) only with force feedback at the end effectors of the legs. It is distinct from active compliance/impedance control which is achieved by using force/torque feedback at each joint of robotic systems [77], [78]. Moreover, active compliance/impedance control often gives rise to unstable locomotion on tough terrain (see VMC in Fig. 6) [57], [58]. Whereas our method utilizes the proximo-distal gradient to enhance locomotor stability on tough terrain (e.g., gravel) (see Figs. 4 and 5 in supplementary material). Our method also differs from passive compliance, which is characterized by physical passive components (e.g., springs and dampers [79]) [80]. In addition, the proposed VAAM is a computational muscle model which can be easily applied to control physical legged robots [21], [38]. Thereby, the VAAM is also different from the Hill's muscle model [81] where there are typically 16 parameters to be tuned, usually used in computer simulations [29]. In conclusion, the main contribution of the work introduced here is that we present a way forward to understand and solve Bernstein's problem [15] of how to efficiently control many DOFs in multilegged locomotion tasks. This allows the six-legged robot AMOS to achieve adaptive and energy efficient walking without complex passive components or force/torque sensing systems. Due to the simple forward models of the proposed sensorimotor learning, the real contact forces lag (e.g., delay) behind the predicted contact forces (see Fig. 17). One can see that such delays slightly increase (see Table I) when the modulatory input S of the MNN increases. Thus, for future work, we will replace the simple forward models with advanced ones, like reservoirbased online adaptive forward models [82]. It has been shown that such reservoir-based forward models can accurately predict sensory feedback and are robust to variation of delayed feedback. Another option is to use another learning method, like deep learning [83].

REFERENCES

- D. P. Ferris, M. Louie, and C. T. Farley, "Running in the real world: Adjusting leg stiffness for different surfaces," *Proc. Roy. Soc. London B Biol. Sci.*, vol. 265, no. 1400, pp. 989–994, Jun. 1998.
- [2] C. T. Farley, H. H. P. Houdijk, C. Van Strien, and M. Louie, "Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses," J. Appl. Physiol., vol. 85, no. 3, pp. 1044–1055, Sep. 1998.
- [3] A. J. Spence, "Control strategies for legged locomotion: A comparative approach," in *Proc. 7th Eur. Nonlinear Dyn. Conf. (ENOC)*, vol. 4, Rome, Italy, 2011, pp. 1–2.
- [4] A. E. Kerdok, A. A. Biewener, T. A. McMahon, P. G. Weyand, and H. M. Herr, "Energetics and mechanics of human running on surfaces of different stiffnesses," *J. Appl. Physiol.*, vol. 92, no. 2, pp. 469–478, Feb. 2002.
- [5] R. Full, C. Farley, and J. Winters, "Musculoskeletal dynamics in rhythmic systems: A comparative approach to legged locomotion," in *Biomechanics and Neural Control of Posture and Movement*, J. Winters and P. Crago, Eds. New York, NY, USA: Springer, 2000, pp. 192–205.
- [6] T. A. McMahon and G. C. Cheng, "The mechanics of running: How does stiffness couple with speed?" J. Biomech., vol. 23, pp. 65–78, Feb. 1990.
- [7] J. Nishii, "Legged insects select the optimal locomotor pattern based on the energetic cost," *Biol. Cybern.*, vol. 83, no. 5, pp. 435–442, Nov. 2000.
- [8] J. Nishi, "Gait pattern and energetic cost in hexapods," in Proc. 20th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., vol. 5. Hong Kong, Oct./Nov. 1998, pp. 2430–2433.
- [9] L. A. Miller *et al.*, "Using computational and mechanical models to study animal locomotion," *Integr. Comp. Biol.*, vol. 52, no. 5, pp. 553–575, Nov. 2012.

XIONG et al.: ADAPTIVE AND ENERGY EFFICIENT WALKING IN A HEXAPOD ROBOT

- [10] K. Nishikawa *et al.*, "Neuromechanics: An integrative approach for understanding motor control," *Integr. Comp. Biol.*, vol. 47, no. 1, pp. 16–54, 2007.
- [11] E. Tytell, P. Holmes, and A. Cohen, "Spikes alone do not behavior make: Why neuroscience needs biomechanics," *Curr. Opin. Neurobiol.*, vol. 21, no. 5, pp. 816–822, Oct. 2011.
- [12] J. J. Abbas and R. J. Full, "Neuromechanical interaction in cyclic movements," in *Biomechanics and Neural Control of Posture and Movement*, J. Winters and P. Crago, Eds. New York, NY, USA: Springer, 2000, pp. 177–191.
- [13] H. J. Chiel, L. H. Ting, Ö. Ekeberg, and M. J. Z. Hartmann, "The brain in its body: Motor control and sensing in a biomechanical context," *J. Neurosci.*, vol. 29, no. 41, pp. 12807–12814, Oct. 2009.
- [14] S. Sponberg and R. J. Full, "Neuromechanical response of musculoskeletal structures in cockroaches during rapid running on rough terrain," *J. Exp. Biol.*, vol. 211, no. 3, pp. 433–446, Feb. 2008.
- [15] N. Bernstein, *The Coordination and Regulation of Movements*. Oxford, NY, USA: Pergamon Press, 1967.
- [16] R. Full and A. Ahn, "Static forces and moments generated in the insect leg: Comparison of a three-dimensional musculo-skeletal computer model with experimental measurements," *J. Exp. Biol.*, vol. 198, no. 6, pp. 1285–1298, 1995.
- [17] R. Full and D. Koditschek, "Templates and anchors: Neuromechanical hypotheses of legged locomotion on land," *J. Exp. Biol.*, vol. 202, no. 23, pp. 3325–3332, Dec. 1999.
- [18] U. Saranli, M. Buehler, and D. E. Koditschek, "RHex: A simple and highly mobile hexapod robot," *Int. J. Robot. Res.*, vol. 20, no. 7, pp. 616–631, Jul. 2001.
- [19] K. Galloway, J. Clark, M. Yim, and D. Koditschek, "Experimental investigations into the role of passive variable compliant legs for dynamic robotic locomotion," in *Proc. IEEE Int. Conf. Robot. Autom. (ICRA)*, Shanghai, China, May 2011, pp. 1243–1249.
- [20] D. E. Koditschek, R. J. Full, and M. Buehler, "Mechanical aspects of legged locomotion control," *Arthropod Struct. Develop.*, vol. 33, no. 3, pp. 251–272, 2004.
- [21] X. Xiong, F. Wörgötter, and P. Manoonpong, "Neuromechanical control for hexapedal robot walking on challenging surfaces and surface classification," *Robot. Auton. Syst.*, vol. 62, no. 12, pp. 1777–1789, Dec. 2014.
- [22] P. Manoonpong, U. Parlitz, and F. Wörgötter, "Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines," *Front. Neural Circuits*, vol. 7, no. 12, Feb. 2013, pp. 1–28.
- [23] J. Lee *et al.*, "Templates and anchors for antenna-based wall following in cockroaches and robots," *IEEE Trans. Robot.*, vol. 24, no. 1, pp. 130–143, Feb. 2008.
- [24] M. A. Smith, A. Ghazizadeh, and R. Shadmehr, "Interacting adaptive processes with different timescales underlie short-term motor learning," *PLoS Biol.*, vol. 4, no. 6, May 2006, Art. ID e179.
- [25] D. M. Wolpert, J. Diedrichsen, and J. R. Flanagan, "Principles of sensorimotor learning," *Nat. Rev. Neurosci.*, vol. 12, no. 12, pp. 739–751, Dec. 2011.
- [26] A. J. Ijspeert, "Central pattern generators for locomotion control in animals and robots: A review," *Neural Netw.*, vol. 21, no. 4, pp. 642–653, May 2008.
- [27] C. Semini *et al.*, "Towards versatile legged robots through active impedance control," *Int. J. Robot. Res. (IJRR)*, vol. 34, no 7, pp. 1003–1020, Jun. 2015.
- [28] P. Holmes, R. Full, D. Koditschek, and J. Guckenheimer, "The dynamics of legged locomotion: Models, analyses, and challenges," *SIAM Rev.*, vol. 48, no. 2, pp. 207–304, Jun. 2006.
- [29] J. Proctor and P. Holmes, "Reflexes and preflexes: On the role of sensory feedback on rhythmic patterns in insect locomotion," *Biol. Cybern.*, vol. 102, no. 6, pp. 513–531, Jun. 2010.
- [30] P. Manoonpong, F. Pasemann, and F. Wörgötter, "Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking machines," *Robot. Auton. Syst.*, vol. 56, no. 3, pp. 265–288, Mar. 2008.
- [31] R. Ham, T. Sugar, B. Vanderborght, K. Hollander, and D. Lefeber, "Compliant actuator designs," *IEEE Robot. Autom. Mag.*, vol. 16, no. 3, pp. 81–94, Sep. 2009.
- [32] D. Kingsley, R. Quinn, and R. E. Ritzmann, "A cockroach inspired robot with artificial muscles," in *Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst.*, Beijing, China, Oct. 2006, pp. 1837–1842.
- [33] J. Pratt, C.-M. Chew, A. Torres, P. Dilworth, and G. Pratt, "Virtual model control: An intuitive approach for bipedal locomotion," *Int. J. Robot. Res.*, vol. 20, no. 2, pp. 129–143, Feb. 2001.

- [34] M. Hutter, C. Remy, M. Hoepflinger, and R. Siegwart, "ScarLETH: Design and control of a planar running robot," in *Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS)*, San Francisco, CA, USA, Sep. 2011, pp. 562–567.
- [35] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal, "Learning variable impedance control," *Int. J. Robot. Res.*, vol. 30, no. 7, pp. 820–833, Jun. 2011.
- [36] B. Doroodgar, Y. Liu, and G. Nejat, "A learning-based semi-autonomous controller for robotic exploration of unknown disaster scenes while searching for victims," *IEEE Trans. Cybern.*, vol. 44, no. 12, pp. 2719–2732, Dec. 2014.
- [37] K. C. Galloway, "Passive variable compliance for dynamic legged robots," Ph.D. dissertation, Mech. Eng. Appl. Mech., Univ. Pennsylvania, Philadelphia, PA, USA, 2010.
- [38] X. Xiong, F. Wörgötter, and P. Manoonpong, "Virtual agonist-antagonist mechanisms produce biological muscle-like functions: An application for robot joint control," *Ind. Robot Int. J.*, vol. 41, no. 4, pp. 340–346, 2014.
- [39] B. Webb, "Neural mechanisms for prediction: Do insects have forward models?" *Trends Neurosci.*, vol. 27, no. 5, pp. 278–282, May 2004.
- [40] P. Cormie, M. McGuigan, and R. Newton, "Developing maximal neuromuscular power," *Sports Med.*, vol. 41, no. 1, pp. 17–38, Jan. 2011.
- [41] A. A. Biewener, Biomechanics—Structures and Systems: A Practical Approach. London, U.K.: Oxford Univ. Press, 1992.
- [42] J. H. Long, "Muscles, elastic energy, and the dynamics of body stiffness in swimming eels," *Amer. Zool.*, vol. 38, no. 4, pp. 771–792, 1998.
- [43] R. P. Kukillaya and P. Holmes, "A model for insect locomotion in the horizontal plane: Feedforward activation of fast muscles, stability, and robustness," *J. Theor. Biol.*, vol. 261, no. 2, pp. 210–226, Nov. 2009.
- [44] D. M. Dudek and R. J. Full, "Passive mechanical properties of legs from running insects," J. Exp. Biol., vol. 209, no. 8, pp. 1502–1515, Apr. 2006.
- [45] D. V. Lee, M. P. McGuigan, E. H. Yoo, and A. A. Biewener, "Compliance, actuation, and work characteristics of the goat foreleg and hindleg during level, uphill, and downhill running," *J. Appl. Physiol.*, vol. 104, no. 1, pp. 130–141, Jan. 2008.
- [46] A. M. Carroll, D. V. Lee, and A. A. Biewener, "Differential muscle function between muscle synergists: Long and lateral heads of the triceps in jumping and landing goats (Capra hircus)," *J. Appl. Physiol.*, vol. 105, no. 4, pp. 1262–1273, Oct. 2008.
- [47] M. A. Daley, G. Felix, and A. A. Biewener, "Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control," *J. Exp. Biol.*, vol. 210, no. 3, pp. 383–394, Feb. 2007.
- [48] A. Biewener, "Muscle function in vivo: A comparison of muscles used for elastic energy savings versus muscles used to generate mechanical power1," *Amer. Zool.*, vol. 38, no. 4, pp. 703–717, Sep. 1998.
- [49] M. A. Daley and A. A. Biewener, "Muscle force–length dynamics during level versus incline locomotion: A comparison of in vivo performance of two guinea fowl ankle extensors," *J. Exp. Biol.*, vol. 206, no. 17, pp. 2941–2958, 2003.
- [50] T. J. Roberts, R. L. Marsh, P. G. Weyand, and C. R. Taylor, "Muscular force in running turkeys: The economy of minimizing work," *Science*, vol. 275, no. 5303, pp. 1113–1115, Feb. 1997.
- [51] G. B. Gillis, J. P. Flynn, P. McGuigan, and A. A. Biewener, "Patterns of strain and activation in the thigh muscles of goats across gaits during level locomotion," *J. Exp. Biol.*, vol. 208, no. 24, pp. 4599–4611, Dec. 2005.
- [52] M. P. McGuigan, E. Yoo, D. V. Lee, and A. A. Biewener, "Dynamics of goat distal hind limb muscletendon function in response to locomotor grade," *J. Exp. Biol.*, vol. 212, no. 13, pp. 2092–2104, Jul. 2009.
- [53] D. V. Lee and A. A. Biewener, "BigDog-inspired studies in the locomotion of goats and dogs," *Integr. Comp. Biol.*, vol. 51, no. 1, pp. 190–202, Jul. 2011.
- [54] M. A. Daley and A. A. Biewener, "Leg muscles that mediate stability: Mechanics and control of two distal extensor muscles during obstacle negotiation in the guinea fowl," *Philos. Trans. Roy. Soc. London B Biol. Sci.*, vol. 366, no. 1570, pp. 1580–1591, May 2011.
- [55] M. A. Daley and A. Biewener, "Running over rough terrain reveals limb control for intrinsic stability," *Proc. Nat. Acad. Sci. USA*, vol. 103, no. 42, pp. 15681–15686, Aug. 2006.
- [56] T. J. Roberts, "The integrated function of muscles and tendons during locomotion," *Comp. Biochem. Physiol. A Mol. Integr. Physiol.*, vol. 133, no. 4, pp. 1087–1099, Dec. 2002.

14

- [57] E. Garcia and P. de Santos, "On the improvement of walking performance in natural environments by a compliant adaptive gait," *IEEE Trans. Robot.*, vol. 22, no. 6, pp. 1240–1253, Dec. 2006.
- [58] Y. Fukuoka, H. Kimura, and A. H. Cohen, "Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts," *Int. J. Robot. Res.*, vol. 22, nos. 3–4, pp. 187–202, Mar. 2003.
- [59] D. A. McCrea and I. A. Rybak, "Organization of mammalian locomotor rhythm and pattern generation," *Brain Res. Rev.*, vol. 57, no. 1, pp. 134–146, Jan. 2008.
- [60] P. Arena, L. Fortuna, M. Frasca, and G. Sicurella, "An adaptive, selforganizing dynamical system for hierarchical control of bio-inspired locomotion," *IEEE Trans. Syst. Man, Cybern. B, Cybern.*, vol. 34, no. 4, pp. 1823–1837, Aug. 2004.
- [61] J. Yu, M. Tan, J. Chen, and J. Zhang, "A survey on CPG-inspired control models and system implementation," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 25, no. 3, pp. 441–456, Mar. 2014.
- [62] S. Heitmann, M. Breakspear, and N. Ferns, "Muscle co-contraction modulates damping and joint stability in a three-link biomechanical limb," *Front. Neurorobot.*, vol. 5, no. 5, pp. 1–14, Jan. 2012.
- [63] X. Xiong, F. Wörgötter, and P. Manoonpong, "A neuromechanical controller of a hexapod robot for walking on sponge, gravel and snow surfaces," in *Proc. 11th Eur. Conf. Artif. Life (ECAL)*, Taormina, Italy, 2013, pp. 989–996.
- [64] N. Hogan and S. P. Buerger, "Impedance and interaction control," in *Robotics and Automation Handbook*, T. R. Kurfess, Ed. Boca Raton, FL, USA: CRC Press, 2004.
- [65] M. H. Dickinson *et al.*, "How animals move: An integrative view," *Science*, vol. 288, no. 5463, pp. 100–106, Apr. 2000.
- [66] S. Zill, J. Schmitz, and A. Büschges, "Load sensing and control of posture and locomotion," *Arthropod Struct. Develop.*, vol. 33, no. 3, pp. 273–286, Jul. 2004.
- [67] R. Der and G. Martius, "The LPZROBOTS simulator," in *The Playful Machine* (Cognitive Systems Monographs), vol. 15. Berlin, Germany: Springer, 2012, pp. 293–308.
- [68] M. Raibert, K. Blankespoor, G. Nelson, R. Playter, and BigDog Team, "BigDog, the rough-terrain quadruped robot," in *Proc. 17th IFAC World Congr.*, vol. 17. 2008, pp. 10822–10825.
- [69] A. K. Lappin *et al.*, "Storage and recovery of elastic potential energy powers ballistic prey capture in toads," *J. Exp. Biol.*, vol. 209, no. 13, pp. 2535–2553, Jul. 2006.
- [70] R. M. Alexander, *Principles of Animal Locomotion*. Princeton, NJ, USA: Princeton Univ. Press, 2003.
- [71] N. Kohut, A. Hoover, K. Ma, S. Baek, and R. Fearing, "MEDIC: A legged millirobot utilizing novel obstacle traversal," in *Proc. IEEE Int. Conf. Robot. Autom. (ICRA)*, Shanghai, China, May 2011, pp. 802–808.
- [72] A. T. Baisch, P. Sreetharan, and R. Wood, "Biologically-inspired locomotion of a 2g hexapod robot," in *Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS)*, Taipei, Taiwan, Oct. 2010, pp. 5360–5365.
- [73] P. Birkmeyer, K. Peterson, and R. Fearing, "DASH: A dynamic 16g hexapedal robot," in *Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS)*, St. Louis, MO, USA, Oct. 2009, pp. 2683–2689.
- [74] P. Arena, L. Fortuna, M. Frasca, L. Patane, and M. Pavone, "Realization of a CNN-driven cockroach-inspired robot," in *Proc. IEEE Int. Symp. Circuits Syst. (ISCAS)*, May 2006, pp. 2649–2652.
- [75] G. A. Pratt, "Low impedance walking robots," *Integr. Comp. Biol.*, vol. 42, no. 1, pp. 174–181, 2002.
- [76] P. Gregorio, M. Ahmadi, and M. Buehler, "Design, control, and energetics of an electrically actuated legged robot," *IEEE Trans. Syst. Man, Cybern. B, Cybern.*, vol. 27, no. 4, pp. 626–634, Aug. 1997.
- [77] S. Hussain, S. Xie, and P. Jamwal, "Adaptive impedance control of a robotic orthosis for gait rehabilitation," *IEEE Trans. Cybern.*, vol. 43, no. 3, pp. 1025–1034, Jun. 2013.
- [78] M. Erden and A. Billard, "End-point impedance measurements across dominant and nondominant hands and robotic assistance with directional damping," *IEEE Trans. Cybern.*, vol. 45, no. 6, pp. 1146–1157, Jun. 2015.
- [79] A. Rönnau, G. Heppner, M. Nowicki, and R. Dillmann, "LAURON V: A versatile six-legged walking robot with advanced maneuverability," in *Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatron. (AIM)*, Besançon, France, Jul. 2014, pp. 82–87.
- [80] B. Vanderborght *et al.*, "Variable impedance actuators: A review," *Robot. Auton. Syst.*, vol. 61, no. 12, pp. 1601–1614, Dec. 2013.
- [81] F. Zajac, "Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control," *Crit. Rev. Biomed. Eng.*, vol. 17, no. 4, pp. 359–411, 1989.

- [82] P. Manoonpong, S. Dasgupta, D. Goldschmidt, and F. Worgotter, "Reservoir-based online adaptive forward models with neural control for complex locomotion in a hexapod robot," in *Proc. Int. Joint Conf. Neural Netw. (IJCNN)*, Beijing, China, Jul. 2014, pp. 3295–3302.
- [83] D. Yu and L. Deng, "Deep learning and its applications to signal and information processing," *IEEE Signal Process. Mag.*, vol. 28, no. 1, pp. 145–154, Jan. 2011.

Xiaofeng Xiong received the Ph.D. degree in computer science from Georg-August-Universität Göttingen, Göttingen, Germany, in 2015.

He is currently a Post-Doctoral Fellow with the Institute for Neurorehabilitation Systems, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen. His current research interests include neuromusculoskeletal modeling of legged systems, motor control and learning, and neuromechanics.

Dr. Xiong was a recipient of the Industrial Robot Innovation Award in 2013 for practical innovation in the field of robotics (highly commended) by the Climbing and Walking Robot Association and Emerald Publishing Company.

Florentin Wörgötter received the Ph.D. degree in work on the visual cortex from the University of Essen, Essen, Germany, in 1988.

He was a Professor of Computational Neuroscience with the Psychology Department, University of Stirling, Stirling, U.K., from 2000 to 2005, where his interests strongly turned toward learning in neurons. Since 2005, he has been the Head of the Computational Neuroscience Department, Bernstein Center for Computational Neuroscience, Institute of Physics III, Georg-

August-Universität Göttingen, Göttingen, Germany. His current research interests include information processing in closed-loop perception-action systems, sensory processing, motor control, and learning/plasticity, which are tested in different robotic implementations.

Poramate Manoonpong received the Ph.D. degree in electrical engineering and computer science from the University of Siegen, Siegen, Germany, in 2006.

He was the Emmy Noether Research Group Leader for Neural Control, Memory, and Learning for Complex Behaviors in Multisensori-Motor Robotic Systems with the Bernstein Center for Computational Neuroscience, Georg-August-Universität Göttingen, Göttingen, Germany, from 2011 to 2014. He is currently an Associate Professor

of Embodied AI/Robotics and a Principal Investigator of Embodied AI and Neurorobotics Laboratory, part of the Center for Biorobotics, University of Southern Denmark, Odense, Denmark. His current research interests include neural locomotion control of walking machines, biomechanics, dynamics of recurrent neural networks, learning/plasticity, embodied cognitive systems, and prosthetic and orthopedic devices.