
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS 1

Adaptive and Energy Efficient Walking in a
Hexapod Robot Under Neuromechanical
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Abstract—The control of multilegged animal walking is a
neuromechanical process, and to achieve this in an adaptive
and energy efficient way is a difficult and challenging problem.
This is due to the fact that this process needs in real time:
1) to coordinate very many degrees of freedom of jointed legs;
2) to generate the proper leg stiffness (i.e., compliance); and
3) to determine joint angles that give rise to particular posi-
tions at the endpoints of the legs. To tackle this problem for a
robotic application, here we present a neuromechanical controller
coupled with sensorimotor learning. The controller consists of a
modular neural network for coordinating 18 joints and several
virtual agonist–antagonist muscle mechanisms (VAAMs) for vari-
able compliant joint motions. In addition, sensorimotor learning,
including forward models and dual-rate learning processes, is
introduced for predicting foot force feedback and for online tun-
ing the VAAMs’ stiffness parameters. The control and learning
mechanisms enable the hexapod robot advanced mobility sen-
sor driven-walking device (AMOS) to achieve variable compliant
walking that accommodates different gaits and surfaces. As a
consequence, AMOS can perform more energy efficient walk-
ing, compared to other small legged robots. In addition, this
paper also shows that the tight combination of neural control
with tunable muscle-like functions, guided by sensory feedback
and coupled with sensorimotor learning, is a way forward to
better understand and solve adaptive coordination problems in
multilegged locomotion.
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I. INTRODUCTION

LEGGED animals are capable of adjusting their leg stiff-
ness to accommodate surfaces of variable structural

properties [1], [2], thereby leading to adaptive and energy effi-
cient locomotion [3], [4]. They also tune their leg stiffness to
accommodate different gaits based on energetic cost [5]–[8].
Neurophysiological studies have revealed that these behav-
iors arise from the interplays between the nervous systems
and the musculoskeletal structures (i.e., muscles and body)
of legged animals [9]–[11]. These neuromechanical interac-
tions [12], [13] govern how legged animals achieve adaptive
locomotion on different surfaces. For example, cockroaches
rely more on their musculoskeletal structures to move over a
regular surface. But moving over a more difficult one, they
need to resort to the integrations of their nervous systems
and musculoskeletal structures [14]. As Bernstein pointed out,
the need to control many degrees of freedom (DOFs) is a
characteristics of neuromechanical systems [10], [15]. In a
cockroach (e.g., Blaberus discoidalis), for instance, there are
220 muscles controlling legs with at least 19 DOFs that con-
tribute to its locomotion [16]. Owing to this, modeling the
cooperations within and between different functional compo-
nents of neuromechanical systems in legged locomotion is
a very challenging task (Bernstein’s famous “DOFs” prob-
lem [10], [15]). Along this paradigm, Full and Koditschek [17]
proposed a specific solution where two types of dynamic
models (i.e., template and anchor) are used to model legged
locomotion with many DOFs. An anchor is a representative
model with detailed descriptions of neural circuits, muscles,
and joints. Whereas, a template represents the simplest model
of locomotion by trimming away the detailed descriptions
(e.g., muscles and joints) of the DOFs. Referring to the tem-
plate, hexapod robots (i.e., robot hexapod (RHex) robots) were
designed by Saranli et al. [18]. Each RHex robot having
only six DOFs showed unprecedented mobility over differ-
ent surfaces. Besides, they can also achieve energy efficient
locomotion by exploiting passive variable compliant legs.
For example, leg compliance of an RHex robot was man-
ually tuned to accommodate its running speeds based on
energetic cost [19]. The RHex robot is the best example
for a coordination architecture controlling faster movement
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(e.g., running) where mechanical properties (e.g., leg com-
pliance) must be increasingly well tuned to adapt to different
environments [10], [20]. In such a case, more feed-forward
and decentralized control can suffice, since feedback con-
trol may not be effective due to noisy sensing. By contrast,
slower movement (e.g., walking) can heavily count on sens-
ing which allows for more adaptive movement [21], [22].
Similarly, here more feedback and a centralized coordina-
tion architecture will be utilized to control our hexapod robot
advanced mobility sensor driven-walking device (AMOS) in
a neuromechanical manner. Moreover, the modeling of RHex
robots is no more than a template, since this template behav-
ior was not embedded within a very detailed model (i.e.,
anchor). The anchor model is a representative model describ-
ing a nervous system, muscles, joints, and legs with many
DOFs like in insects [20]. Templates and anchors are more
than “simple models” and “complex models.” There should
be a natural embedding of the template behavior within
the anchor [17], [23]. Therefore, an anchor (i.e., detailed)
controller for adaptive and energy efficient physical robot loco-
motion that accommodates different gaits and surfaces remains
an important and unresolved problem in a neuromechanical
context [10], [15].

To solve this problem, we propose a neuromechanical con-
troller [21] coupled with sensorimotor learning [24], [25]
for active tuning [11] of passive properties (e.g., stiffness
parameters) of the muscle-like components driving the joints
during locomotion. Classical neural control [26] and vari-
able compliance control [27] are generalized and integrated
into our neuromechanical controller consisting of a modular
neural network (MNN) and several virtual agonist–antagonist
mechanisms (VAAMs). The proposed neuromechanical con-
troller [21] simplifies and integrates neural control and Hill’s
muscle model typically adopted in theoretical neuromechan-
ical models [28], [29], such that the controller is computa-
tionally implemented on physical legged robots with many
DOFs. Such integration facilitates more adaptive and energy
efficient walking on challenging surfaces. For instance, the
neuromechanical controller enables AMOS to achieve more
energy efficient waking on the challenging surfaces [21], com-
pared to the adaptive neural controller in [22] and [30]. Such
energy efficient walking can be also achieved by passive
or active compliance control. Passive compliance control is
typically regarded as the integration of actuators and vis-
coelastic mechanics [31]. Such control, however, leads to
structural and sensory complexities that cause bulky and
energy-inefficient legged robots with many DOFs [32]. By
contrast, our neuromechanical controller solves these prob-
lems by using virtual muscle-like mechanisms (i.e., VAAMs),
which can be applied to variable compliance control of small
legged robots with many DOFs. Moreover, the integration of
the VAAMs and a proximo-distal gradient results in more
stable compliant locomotion, compared to classical active
compliance control [33], [34]. Active compliance control typ-
ically requires force/torque sensing at each joint of legged
robots and its control parameters are often adjusted by hand
or offline learning [35], [36]. The parameters have to be
relearned or manually readjusted when walking on different

surfaces. Therefore, self-adjusting compliance control on a
physical legged robot with many DOFs remains an important
and unsolved problem in a context of energy efficient walk-
ing on different surfaces, which this paper (see Fig. 1) tries to
address in a more efficient way. As a result, the work enables
our hexapod robot AMOS to achieve more energy efficient
walking [i.e., lower costs of transport (COTs), see Fig. 15]
than other small legged robots (less than 8 kg [37]), when
proper gaits are chosen for walking over different surfaces.
These surfaces include loose surfaces (e.g., fine gravel and
coarse gravel), an elastic surface (e.g., sponge), and a muddy
surface (e.g., grassland).

This paper is an extension of [21], [30], and [38]. In [30],
the MNN was developed to only generate reactive behaviors
and omnidirectional walking. In [38], we proposed the muscle-
like mechanisms (i.e., VAAMs) for robotic compliant joint
control. There, we also investigated muscle-like functions and
how to vary compliant joint motions via the manual adjust-
ment of the stiffness parameters of the passive elements of
the VAAMs, but excluded walking. In [21], we integrated the
MNN and VAAMs into neuromechanical control of energy
efficient hexapedal walking, in which there is only one specific
gait with the manual adjustment of the stiffness parameters of
the VAAMs for walking on different surfaces and surface clas-
sification. The new contributions of the work, thus, include the
following.

1) Development of sensorimotor learning (see Fig. 1) for
self-adjusting the stiffness parameters of the VAAMs
that adapts hexapedal walking to nine insect-like gaits
and four challenging surfaces.

2) Combination of the muscle-like mechanisms (VAAMs)
and sensorimotor learning showing a simple but effec-
tive way to achieve adaptive variable compliant joint
motions without complex sensory systems and (physical)
compliant components.

3) Integration of VAAMs with a proximo-distal gradient to
remove locomotor instabilities under active compliance
control.

4) Neuromechanical control coupled with sensorimotor
learning providing a way forward to model and con-
trol adaptive and energy efficient legged locomotion with
many DOFs.

5) Investigations on adaptive leg compliance for different
gaits and energy efficient walking on different surfaces.

6) A better understanding of interactions between neu-
romechanical control, sensorimotor learning, sensory
force feedback, and the environment under adaptive
locomotion.

II. NEUROMECHANICAL CONTROLLER COUPLED

WITH SENSORIMOTOR LEARNING

A. Overview

We include the feed-forward and feedback pathways into
our neuromechanical controller (see Fig. 1). For the feed-
forward pathways, the controller not only consists of feed-
forward control via descending commands (i.e., S, Ni, and Oi)
from a neural circuit to muscle-like components and body
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Fig. 1. Neuromechanical control coupled with sensorimotor learning applied
to the hexapod robot AMOS. Via neural outputs Ni (i = 1, 2, . . . , 18), a neural
circuit activates the muscle-like components that generate position commands
(i.e., Oi) to move the leg joints of AMOS. The legs then interact with the
environment, which produces force feedback (i.e., Fext

m,1) (m = 1, 2, . . . , 6).

Besides, six forward models predict expected force feedback (i.e., Fp
m,1) of

the legs based on the outputs of the neural network. Using Fext
m,1 and Fp

m,1 as
the inputs, 12 dual-rate learning processes actively tune 12 stiffness param-
eters (i.e., Kj, j = 7, 8, . . . , 17, 18) of muscle-like components driving 12
joints. There are three ways of generating position commands Oi driving
the joints: feed-forward neural control for proximal joints (see 1©), combin-
ing feed-forward neural control and tendon-like compliance for intermediate
joints, and tendon-like compliance for distal joints (see 2©). Interestingly, these
three ways are comparable to a proximo-distal gradient [45]–[47] (see text for
details).

mechanics, but also includes six forward models [39] for pre-
dicting force sensing (i.e., Fp

m,1) of the six legs. In the feedback
pathway, there is force sensing (i.e., Fext

m,1) at the end effectors
of the legs. Using Fp

m,1 and Fext
m,1 as the inputs, 12 dual-rate

learning processes can actively tune the stiffness parameters
(i.e., Kj) of the muscle-like components driving 12 joints of
the legs. This leads to variable compliant leg motions over
different surfaces. Actively tuning mechanical properties (e.g.,
joint stiffness) is an important characteristic of animal loco-
motion [11], [40]–[42]. For example, the tunable mechanical
properties of insect legs can help its locomotion over rough
terrain [14], [43], [44].

In addition to neuromechanical interactions, studies of leg
muscle architecture [48] and function [49]–[51] suggest that
a proximo-distal gradient of muscle function and neural con-
trol exists, which reflects different control strategies for the
joints [45]–[47], [52], [53]. Following the gradient, proximal
joints are under feed-forward neural control, and are rarely
sensitive to changes in loading during stance. By contrast, dis-
tal joints are more sensitive to loading, and are basically driven
by tendons. This proximo-distal gradient enhances locomotor
stability of legged animals on rough terrain [47], [54], [55].
Based on the gradient, the contractile elements (CEs) and
passive elements of the VAAMs emulate feed-forward neu-
ral control [14] and compliance of tendons [56], respectively.
The proximal joints [i.e., thoraco coxal (TC) joints] of the
hexapod robot are coordinated only by neural outputs (see 1©
in Fig. 1). Whereas its distal joints [i.e., femur tibia (FTi)
joints] are driven only by the passive elements emulating the
compliance of tendons (see 2© in Fig. 1). The experimental
results show that such a setup enables the hexapod robot to
achieve more stable walking on rough surfaces (e.g., gravels).
The setup enhances stability of legged robot locomotion under
active compliance control which generally leads to locomotor
instabilities [57], [58].

Fig. 2. MNN. There are three different neuron groups: input neuron (S),
hidden neurons (H1−24), and output neurons (N1−18). The input neuron
is used to control walking patterns of the hexapod robot AMOS. The hid-
den neurons are divided into three modules: CPG, PSM, and VRMs, which
have different functionalities (see texts for details). All connection strengths
together with bias terms are indicated by the small numbers except some
parameters of the VRMs (a = 1.7246, b = −2.48285, and c = −1.7246).
Delays λL and λ between output neurons are set to 48 and 16 time steps,
respectively. Abbreviations are: TR(L)1,2,3 = TC joints of the right(left)
front, middle, hind legs, CR(L)1,2,3 = CTr joints of the right(left) front,
middle, hind legs, FR(L)1,2,3 = FTi joints of the right(left) front, middle,
hind legs. Abbreviations are: R(F, M, H) = right (front, middle, hind) leg,
L(F, M, H) = left (front, middle, hind) leg.

In the following, we describe three above introduced com-
ponents of our system.

1) A neural circuit which produces the commands to coor-
dinate joint motions and to change gaits based on
energetic cost.

2) Biomechanical components consisting of muscle-like
components and a bio-inspired body. Walking systems
particularly require an adaptive muscle model where its
parameters can be easily and quickly tuned to achieve
proper compliant joint motions.

3) Sensorimotor learning which can predict sensory conse-
quences of actions and actively tune compliance of joint
motions; thereby enabling walking systems to accommo-
date different gaits and deal with different surfaces. The
details of each component are described below.

B. Neural Circuit: Modular Neural Network

Our MNN is a biologically-inspired hierarchical neural con-
troller [59], [60]. The MNN generates signals for interleg
and intraleg coordination of the six-legged robot AMOS.
Each leg has a TC joint allowing forward and backward
motions, a coxa trochanteral (CTr) joint allowing elevation
and depression motions, and an FTi joint allowing extension
and flexion motions. The MNN consists of a central pattern
generator [CPG [61], see Fig. 2(I)], a phase switch module
[PSM, see Fig. 2(II)], and two velocity regulating modules
[VRMs, see Fig. 2(III)]. All neurons of the MNN are mod-
eled as discrete-time, nonspiking neurons. The activation Hi

of each neuron develops according to

Hi(t) =
m∑

j=1

Wij oj(t − 1) + Bi, i = 1, . . . , m (1)
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where m denotes the number of units, Bi is an internal
bias term (i.e., stationary input) to neuron i, and Wij is
the synaptic strength of the connection from neuron j to
neuron i. The output oi of every neuron of the MNN is cal-
culated using a hyperbolic tangent (tanh) transfer function,
i.e., oi = tanh(Hi),∈ [−1, 1]. The weights Wij are manually
designed, except weights a, b, and c which are obtained by
back-propagation learning [see Fig. 2(III)]. More details of
determining the weights Wij, we refer to [30].

The CPG consists of only two neurons with full connectiv-
ity [61] [see Fig. 2(I)], where B1 and B2 are set to 0.01. The
weights W12 and W21 are given by

W12(S) = 0.18 + S, W21(S) = −0.18 − S (2)

where S ∈ [0.01, 0.18] is the modulatory input determining
the speed of the legs, which increases with increasing S.

The PSM is a generic feed-forward network consist-
ing of three hierarchical layers with ten hidden neurons
(i.e., H3 − H12) [see Fig. 2(II)]. The outputs of the PSM
are projected to the FTi [i.e., F(R, L)(1,2,3)] and CTr [i.e.,
C(R, L)(1,2,3)] motor neurons [see Fig. 2(IV)], as well as to the
neurons H13 and H14 of the two VRMs [see Fig. 2(III)]. The
VRMs are feed-forward networks projecting their outputs to
the TC motor neurons T(R, L)(1,2,3) [see Fig. 2(IV)]. Delays
λL and λ between the motor neurons are fixed [see Fig. 2(IV)].
The outputs N1−18 of the motor neurons are used to acti-
vate the muscle-like components to drive AMOSs legs. Here,
we show how N1−18 enable the legs to perform a fast wave
gait [60] (see Fig. 1 in supplementary material). In addition,
nine gaits (see Fig. 2 in supplementary material) are achieved
by changing the modulatory input S [see (2)] of the MNN
(see Fig. 2). More details of the MNN can be seen in [30].

C. Biomechanical Components

1) Muscle-Like Component—Virtual Agonist–Antagonist
Mechanism: The VAAM consists of a pair of agonist and
antagonist mechanisms [see Fig. 3(a)]. It produces active
and passive forces using its CEs and parallel elements (PEs)
[see Fig. 3(b)]. In Fig. 3(a), a physical joint is driven by a
VAAM (i.e., M1 and M2). Virtual means that the joint, phys-
ically driven by a standard servo motor, imitates muscle-like
behaviors as if it were driven by a pair of physical agonist
and antagonist muscles. The joint actuation relies on the CEs,
while the PEs govern joint compliance.

The parallel elements are modeled as spring-damper sys-
tems [see Fig. 3(b)] in terms of a Voigt muscle model [62].
The active forces produced by the CEs are approximated by
the product of the neural activity Nj and the activity strengths
i(1,2). More details of mathematically modeling the PEs and
CEs can be seen in [63]. We apply Euler’s law to the rotation
of the joint P [see Fig. 3(a)]. The motion equation of the joint
P is given by

Iθ̈ = f ext sin(θ)L︸ ︷︷ ︸
torque by f ext

+
⎡

⎢⎣ rNj︸︷︷︸
torque by CE(1,2)

− r
(
2Kθr + 2Dθ̇r

)
︸ ︷︷ ︸

torque by PE(1,2)

⎤

⎥⎦. (3)

Fig. 3. VAAM for joint control interacting with the ground surface.
(a) Physical joint P is driven by a VAAM (i.e., M1 and M2) with the lengths
L1 and L2. The interaction results in an external force f ext, which drives the
joint P with radius r via the shank with length L. f ext is sensed by a force sen-
sor (i.e., O), and f ⊥ is the amount of f ext directly perpendicular to the position
of the joint P. θ is the rotational angle of the joint P relative to the absolute
frame Z. (b) Agonist and antagonist mechanisms consist of contractile and
parallel elements (CE(1,2) and PE(1,2)). PE(1,2) are spring-damper systems
producing passive forces. CE(1,2) generate active forces depending on the
neural activity Nj and the activity strengths i(1,2) (i.e., i(1,2) ∈ [−1, 1]). The
neural activity Nj is one of the outputs N1−18 of the MNN [see Fig. 2(IV)].

Equation (3) governs the angle θ of a physical joint driven
by the VAAM that is activated by the output Nj (j ∈ Z[1,18])
of the MNN. The joint angle θ and joint velocity θ̇ in (3)
are not from sensory feedback but calculated using fourth-
order Runge–Kutta. In principle, this bio-inspired compliant
joint control approach (i.e., the VAAM) shares a connection
to classical impedance control approaches [64] in terms of
spring-damper based compliance. However, it is a biological
model where biological muscle functions (e.g., brakes [65])
can be easily emulated by changing stiffness and damper
parameters [i.e., K and D in (3)] [38]. Here, through using
sensorimotor learning (see Section II-E for details), K will be
adjusted in an online manner while D will be fixed during
walking. More advantages of the VAAM model are described
in [21].

2) Bio-Inspired Body—Hexapod Robot AMOS: Here we
use a hexapod robot [i.e., AMOS, 5.4 kg weight, see Fig. 4(a)]
as our experimental platform. It has six three-jointed legs (see
Fig. 3 in supplementary material), and each leg emulates the
morphology of a cockroach leg [66]. Every leg has a TC joint
allowing forward and backward motions, a CTr joint allowing
elevation and depression motions, and an FTi joint allowing
extension and flexion motions (see Fig. 3 in supplementary
material). Each joint is physically driven by a standard servo
motor (i.e., HSR-5990TG). There is a force sensor (i.e., FS
Series Force Sensor) used for detecting an analog force signal
at each leg [see fc1−6 in Fig. 4(b)]. A current sensor, installed
inside the body of the hexapod robot, is used to measure the
electrical current supplied to all motors of the robot. Here, the
current sensor signal is used to calculate power consumption
during walking. The sensory data are transmitted via an RS232
serial connection to an external PC on which the controller is
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Fig. 4. Hexapod robot AMOS. Its three-jointed legs mimic leg morphology of
an insect (see Fig. 3 in supplementary material). (a) AMOS and its sensors.
fc(1−6) are force sensors. (b) Outputs O0−18 controlling the 19 joints of
AMOS when receiving analog signals f ext

1−6, which are detected by the force
sensors at the legs. Abbreviations are: L(1,2,3) = Left (Front, Middle, Hind)
leg. R(1,2,3) = Right (Front, Middle, Hind) leg.

implemented. The final motor commands of the controller are
sent to the robot also via the serial connection.

D. Neuromechanical Control: Combining Neural Circuit and
Biomechanical Components

The outputs O1−18 ∈ [−1, 1] of the neuromechanical
controller are linearly scaled and transmitted to control the
positions of the standard servo motors driving the 18 joints of
the hexapod robot [see Fig. 5(b) in supplementary material].
Note that the command O0 here is set to a constant value
(i.e., O0 = 0) for controlling the backbone joint to the mid-
dle position. For joint control (i.e., O1−18), different control
strategies are applied to swing and stance phases, like virtual
model controllers [33], [34].

1) Swing Phase: When a leg is in swing phases (i.e.,
f ext
i = 0, i = 1, 2, . . . , 5, 6), the outputs N(i,i+6,i+12) of the

MNN [see Fig. 2(IV)] are linearly transformed into the out-
puts O(i,i+6,i+12) controlling the TC, CTr, and FTi joints.
O(i,i+6,i+12) satisfy
[
Oi, Oi+6, Oi+12

]T = [
0.4Ni, 0.15Ni+6,−0.02Ni+12

]T

− [0.05,−0.86, 0.43]T , i ∈ Z[1,6]. (4)

The details of (4) can be seen in [21, Eqs. (A.1)–(A.3)]. Note
that the last values of the outputs O(i,i+6,i+12) of the swing
phase are kept and transferred to the initial joint angles of the

following stance phase. This leads to smooth switches from
swing to stance phases (see Fig. 6 in supplementary material).

2) Stance Phase: The TC joint of the leg allowing only
horizontal motion is not affected by the PEs of the VAAM
since there is only detection of vertical foot force at the end
effector of the leg. As a consequence, the TC joint is driven
by the CEs of the VAAM that simulate feed-forward neu-
ral control. By contrast, the CTr and FTi joints, contributing
to vertical motion of the leg, can be influenced by vertical
foot force. Based on the VAAMs, we test nine possible setups
(see Table I in supplementary material) to control the CTr
and FTi joints in a physical simulator (i.e., LPZROBOTS sim-
ulator [67]). The simulation results show that the setup S2
leads to coordinated movement and stable locomotion with
the smallest body oscillation (see Fig. 4 in supplementary
material). The setup S2 is as follows: each TC joint (i.e.,
proximal joint) is purely controlled by the CEs of the VAAM
(i.e., pure actuation), each CTr joint (i.e., intermediate joint)
is governed by the CEs and PEs of the VAAM (i.e., combi-
nation of actuation and compliance), and each FTi joint (i.e.,
distal joint) is driven by the PEs (i.e., PE1 and PE2) of the
VAAM (i.e., pure compliance) (see more details in Fig. 5 of
supplementary material). Interestingly, this setup also complies
with a proximo-distal gradient revealed by biological studies
on three-jointed leg locomotion [45], [53], [68]. These studies
show that proximal joints mainly act as actuation while dis-
tal joints serve as compliance in legged animal locomotion.
Such passive compliance and active actuation make the VAAM
different from virtual model control (VMC), which only con-
tains a virtual passive elements (e.g., spring) attached to the
robot [33] (see Fig. 5). In contrast to VMC controllers [34], the
VAAM not only includes virtual passive elements to produce
passive forces, but also integrates virtual CEs that generate
active forces driven by neural control. The VAAM control
is, thus, more strongly bio-inspired by integrating neural con-
trol with muscle-like functions, compared to VMC controllers.
As a result, the VAAM control enables AMOS to not only
achieve more stable walking under active compliance con-
trol (see Fig. 6), but also easily emulate muscle-like functions
(e.g., brakes and springs) [38].

The outputs O1−18 of the proposed neuromechanical con-
troller are calculated as follows.

All TC joints are controlled only by CE(1,2) of the VAAM.
The matrix of the outputs of the TC motor neurons is T6×1 =
[N1, N2, . . . , N6]T [see Fig. 2(IV)]. Oj is given by (j ∈ Z[1,6])

Oj = 0.4Tj,1 − 0.05. (5)

The details of (5) can be seen in [21, Eq. (A.4)].
Each CTr joint is driven by PE(1,2) and CE(1,2) of the

VAAM. The matrix θ26×1 of the CTr angles is the sum of
the Hadamard products (see [63, Eqs. (17) and (18)])

Iθ̈26×1 = Fext
6×1 ◦

(
L2 cos(θ26×1) + �V16×1

)

+
[
rC6×1 − 2r2(K26×1 ◦ θ26×1

+ D26×1 ◦ θ̇26×1
)]

.

(6)
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Fig. 5. Schematic of VMC and VAAM control. (a) Virtual model con-
troller [33] that only exploits a virtual passive element (e.g., spring) attaching
the body to the end effector. (b) VAAM controller that uses the virtual CEs
and passive elements, see Fig. 3. The controller is based on a proximo-distal
gradient (see more details in Fig. 5 of supplementary material).

The angles θ2m,1 [m ∈ Z[1,6], see θ26×1 in (6)] of the CTr
joints are linearly transformed into their outputs Oj (see more
details in Fig. 5 of supplementary material). Oj is given by
(j ∈ Z[7,12])

Oj = −0.8θ2m,1 − 0.38, m = j − 6. (7)

The details of (7) can be seen in [21, Eq. (A.5)].
Each FTi joint is driven only by PE(1,2) of the VAAM

(see more details in Fig. 5 of supplementary material). The
FTi angle matrix θ16×1 is the sum of the Hadamard products
(see [63, Eqs. (13)–(15)])

Iθ̈16×1 = Fext
6×1 ◦ sin(θ16×1)L1

− 2r2(K16×1 ◦ θ16×1 + D16×1 ◦ θ̇16×1
)
. (8)

The angles θ1m,1 [m ∈ Z[1,6], see θ16×1 in (8)] of the FTi
joints can be linearly transformed into their outputs Oj (see
more details in Fig. 5 of supplementary material). Oj is given
by (j ∈ Z[13,18])

Oj = 0.92θ1m,1 + 0.12, m = j − 12. (9)

The details of (9) can be seen in [21, Eq. (A.6)].

Fig. 6. Vertical positions of center of mass of the hexapod robot AMOS.
The experiments are conducted in the physical simulator LPZROBOTS [67].
The VAAM control (setup S2, see Table I in supplementary material) enables
AMOS to walk stably (smaller body oscillations), compared to VMC.

E. Sensorimotor Learning for Adaptive Compliant
Joint Motions

The adaptive compliant joint motions of AMOS are
achieved by actively adjusting the stiffness parameters K16×1
and K26×1 [see (6), (8)] of the passive elements of the VAAMs
driving the FTi and CTr joints. Here, we apply sensorimo-
tor learning for online adjusting K16×1 and K26×1 at every
time step �t (i.e., �t = 0.019 s). For each leg, there are
two dual-rate learning processes and a forward model [see
Fig. 7(a) and (b)] for the CTr and FTi joints. The forward
models use the outputs [i.e., Om(t)] controlling the TC joints
to predict foot force signals [i.e., Fp

m,1(t), m = 1, 2, . . . , 5, 6].
Specifically, Fp

m,1(t) will gradually increase to 1 when Om(t)
is decreasing [see Fp

4,1(t) and O4(t) in Fig. 8(a)]. Fp
m,1(t) is

given by

Fp
m,1(t + �t) = 0.2Gm,1(t) + 0.8Fp

m,1(t)

Gm,1(t) =
{

1, Om(t + �t) < Om(t)

0, Om(t + �t) > Om(t).
(10)

The matrix e6×1(t) of errors between real and predicted foot
force signals is

e6×1(t) = Fext
6×1(t) − Fp

6×1(t)

e6×1(t) = [e1(t), e2(t), . . . , e5(t), e6(t)]
T (11)

where Fext
6×1(t) is the matrix of the real foot force signals, i.e.,

Fext
6×1(t) = f ext

1−6(t) (see Fig. 4). Fp
6×1(t) is the matrix of the

predicted foot force signals, i.e., Fp
6×1(t) = f p

1−6(t).
For reducing the errors [see e4,1(t) in Fig. 8(b)], the pro-

cesses adjust the stiffness parameters [e.g., K14,1(t)] of the PEs
driving the FTi and CTr joints in each leg [see Fig. 7(a)]. Each
learning process consists of a fast learner and of a slow learner.
Both learners are modeled as linear systems acting in parallel.
The fast one learns compensating the error more quickly, is
indicated by a higher learning rate, i.e., B1f > B1s. Whereas,
the slow one retains previous states much better, is indicated
by a high retention factor, i.e., A1f < A1s. Therefore, the
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Fig. 7. Sensorimotor learning for stiffness parameters K1m,1 and K2m,1. K1m,1 and K2m,1 (m = 1, 2, . . . , 6) are stiffness parameters of the passive
elements driving the FTi and CTr joints of the AMOSs legs. For each leg, there are two dual-rate learning processes for adjusting stiffness parameters
(e.g., K14,1 and K24,1) by using expected and real foot force signals (e.g., Fp

4,1 and Fext
4,1). The expected foot force signal (e.g., Fp

4,1) is predicted by a
forward model based on an output (e.g., O4) controlling the TC joint. Each dual-rate learning process consists of a fast learner and of a slower learner acting in
parallel. (a) Dual-rate learning process for stiffness parameters K1m,1. The parameters of the two learners are set as: A1f = 0.59, A1s = 0.992, B1f = 0.378,
and B1s = 0.036. (b) Dual-rate learning for stiffness parameters K2m,1. The parameters of the two learners are set as: A2f = 0.59, A2s = 0.992, B2f = 0.882,
and B2s = 0.084.

matrix K16×1(t) of stiffness parameters for the FTi joints is
given by

K1 f
6×1(t + �t) = A1f K1 f

6×1(t) + B1f e6×1(t)

K1s
6×1(t + �t) = A1sK1s

6×1(t) + B1se6×1(t)

K16×1(t + �t) = K1 f
6×1(t + �t) + K1s

6×1(t + �t) (12)

where K1 f
m,1(t + �t) are the outputs of fast learners, and

K1s
m,1(t + �t) are the outputs of slow learners. Note that the

value of A1f and A1s are from [24], and B1f and B1s are
empirically chosen [see all values in Fig. 7(a)].

Similarly, the matrix K26×1(t) of stiffness parameters [see
Fig. 7(b)] for the CTr joints is given by

K2 f
6×1(t + �t) = A2f K2 f

6×1(t) + B2f e6×1(t)

K2s
6×1(t + �t) = A2sK2s

6×1(t) + B2se6×1(t)

K26×1(t + �t) = K2 f
6×1(t + �t) + K2s

6×1(t + �t) (13)

where K2 f
m,1(t + �t) are the outputs of fast learners, and

K2s
m,1(t + �t) are the outputs of slow learners. Note that

the value of A2f and A2s are from [24], and B2f and
B2s are empirically chosen [see all values in Fig. 7(b)].
Equations (12) and (13) are written in terms of time t different
from [24] and [25] formulated according to trial number n.

III. EXPERIMENTS

A. Sensorimotor Learning for Self-Adjusting
Stiffness Parameters

For each leg, there are two learning processes coupled with
a forward model (see Fig. 7) for adjusting the stiffness param-
eters (e.g., K14,1 and K24,1). The video of the experiment can
be seen at http://www.youtube.com/watch?v=B0v5D9yiRH4.
At the left front leg, for example, there are two outputs
(i.e., K2 f

4,1 and K2s
4,1) of fast and slow learners acting in

parallel, which contribute to the stiffness parameter K24,1

[see Fig. 8(c)]. One can see that the fast one learns K2 f
4,1

more rapidly, which leads to smaller oscillations [see the
green dashed line in Fig. 8(c)]. By contrast, the slow one
retains K2s

4,1 better, thereby leading to convergence [see the
red dashed line in Fig. 8(c)]. This is because the reten-
tion factor A2f = 0.59 of the fast learner is lower than
A2s = 0.992 of the slow learner [see (13)]. Moreover, the
fast learner is more sensitive to perturbations (i.e., stance
phases) after learning (see Fig. 9), compared to the slow
learner. This is because the learning rate B2f = 0.882 of
the fast learner is higher than B2s = 0.084 of the slow
learner [see (13)]. The combination of the slow and fast learn-
ers enables the stiffness parameters (e.g., K24,1) to achieve
global convergence and local oscillatory stiffness response [see
Figs. 8(c) and 9], which lead to stable and adaptive compli-
ant hexapedal walking on challenging surfaces. Furthermore,
the stiffness parameters (e.g., K24,1) during swing phases

http://www.youtube.com/watch?v=B0v5D9yiRH4
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(a)

(b)

(c)

(d)

Fig. 8. Sensorimotor learning for adjusting stiffness parameter K24,1. Here the gait is fast caterpillar (i.e., the modulatory input S = 0.10). (a) Forward
model. The output O4(t) controlling the TC joint is applied to predict the foot force signal Fp

4,1(t) [see (10)]. (b) Contact forces. Fext
4,1(t) and Fp

4,1 are the
real and predicted contact forces. (c) Learning the stiffness parameter K24,1. K24,1 is the sum of the outputs (i.e., K2 f

4,1 and K2s
4,1) of a fast learner and a

slow learner using the error e4,1 between Fext
4,1 and Fp

4,1 [see (13)]. The adjustment of stiffness parameter K14,1 driving the FTi joint in the left front leg is
shown in Fig. 10(a). (d) O10, and O16 are the outputs controlling the positions of the CTr and FTi joints in the left front leg.

are higher than the ones during stance phases (see Fig. 9),
since they (during the swing phases) are kept as the stiffness
parameters from the previous stance phases. Note that senso-
rimotor learning [see (10)–(13)] is not applied to adaptively
control the joints during swing phases, because only feed-
forward neural control [i.e., no stiffness parameters K(1, 2)m,1,
see (4)] is used for joint control during swing phases. During
stance phases, the stiffness parameters (e.g., K24,1) initially
decrease and only later increase (see Fig. 9). This is because
the muscle-like mechanisms (i.e., VAAMs) initially soften
the joints to absorb the impact of external loads, and later
stiffen them to obtain more force for foothold and moving
forward. Similarly, the PEs of the VAAMs also soften and
stiffen the FTi joints during stances phases [see Fig. 10(a)]. In
other words, the VAAMs stiffen joints when the external load
increases (i.e., stance phases). This property of the VAAMs
is comparable to that of biological muscles, which become
stiff when the external load increases [10], [69]. Note that
AMOS had difficulties to walk on all experimental surfaces
when only fast or slow learners were used to tune stiffness

parameters K16×1 and K26×1. The video of the experiment can
be seen at http://www.youtube.com/watch?v=Lq22FibYLE4.
This is because the slow or fast learners allow only for
global convergences or local oscillatory stiffness responses
(see Fig. 9). Whereas combining the slow and fast learn-
ers, the dual-rate learners enable K1m,1 and K2m,1 to achieve
global convergences [see Fig. 8(c)] and local oscillatory stiff-
ness responses (see Fig. 10), thereby leading to stable and
adaptive walking on different surfaces. Moreover, the ranges
of the stiffness parameters K1m,1 and K2m,1 vary between
hind and nonhind legs. Lower K1(3,6),1 and higher K2(3,6),1
(see Fig. 10) press the hind legs more down, which enhance
locomotion stability, compared to the front and middle legs.
This is because the mass of AMOS mainly concentrates
on its hind part. Furthermore, the values of B(1, 2)f and
B(1, 2)s are empirically chosen to produce proper stiffness
parameters K1m,1 and K2m,1 (see Fig. 7), which lead to
appropriate (e.g., smooth) compliant joint motions of AMOS.
For example, the compliant CTr joint motions are smoother
(see K2m,1 = 9.0 in Fig. 11) when the parameters K2m,1 of

http://www.youtube.com/watch?v=Lq22FibYLE4
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Fig. 9. Sensorimotor learning for adjusting stiffness parameter K24,1 during
a swing and stance phases (see more details in Fig. 8). The figure is clipped
from Fig. 8(c).

(a)

(b)

Fig. 10. Stiffness parameters K11−6,1 and K21−6,1 after learning. Here the
gait is fast caterpillar (i.e., the modulatory input S = 0.10). Stiffness parame-
ters (a) K11−6,1 of the VAAMs that drive the FTi joints and (b) K21−6,1 of
the VAAMs that drive the CTr joints.

their driving VAAMs are self-adjusted between 6.5 and 13.5
[see Fig. 10(b)].

B. Adaptive Leg Compliance for Different Gaits

Actively adjusting stiffness parameters K16×1 and K26×1
allows AMOS to accommodate different gaits. AMOS, for
instance, walked on fine gravel when slow wave (i.e.,
S = 0.02) and fast caterpillar (i.e., S = 0.10) gaits were
chosen [see Fig. 2(a) and (e) in supplementary material],
respectively. The video of the experiments can be seen
at http://www.youtube.com/watch?v=tmqr65qIOTY. One can

Fig. 11. Smoothness of the compliant CTr joint motions that varies with
the stiffness parameters K2m,1. Note that changing initial joint angles θ2m,1
does not affect the smoothness of the compliant CTr joint motions (see Fig. 6
in supplementary material).

Fig. 12. Adjustments of K14,1 and K24,1 for different gaits. AMOS walked
on fine gravel where its gait was chosen as slow wave (i.e., S = 0.02) and
fast caterpillar (i.e., S = 0.10) gait, respectively. Sensorimotor learning enables
AMOS to self-adjust stiffness parameters K14,1 and K24,1 for the left front
leg. (a) TC joint outputs O4. (b) CTr joint outputs O10. (c) Stiffness param-
eters K24,1 determine the compliance of CTr joint motions of the left front
leg. (d) FTi joint outputs O16. (e) Stiffness parameters K14,1 determine the
compliance of FTi joint motions of the left front leg. (f) Foot contact force
errors e4,1.

see that AMOS softens and stiffens its CTr and FTi joints
during stance phases, no matter which gait is chosen [see the
gray area in Fig. 12(c) and (e)]. Moreover, the slow wave
gait enables CTr and FTi joints to achieve stiffer motions that
result from larger K1m,1 and K2m,1 [see green dashed cir-
cles in Fig. 12(c) and (e)], compared to the fast caterpillar
gait. That is, AMOS stiffens the legs during stance phases
when the speed of its leg motion is reduced from the fast
gait to the slow gait. This result is comparable to the find-
ing of physiological experiments, which had shown that at

http://www.youtube.com/watch?v=tmqr65qIOTY
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Fig. 13. Adjustments of K14,1 and K24,1 for different surfaces. An inter-
mixed gait (i.e., modulatory input S = 0.12) was chosen for AMOS to walk
on fine and coarse gravel, respectively. Sensorimotor learning enables AMOS
to self-adjust stiffness parameters K14,1 and K24,1 for the left front leg.
(a) TC joint outputs O4. (b) CTr joint outputs O10. (c) Stiffness parameters
K24,1 determine the compliance of the CTr joint motions of the left front leg.
(d) FTi joint outputs O16. (e) Stiffness parameters K14,1 determine the com-
pliance of the FTi joint motions of the left front leg. (f) Foot contact force
errors e4,1.

low speed animals walk by vaulting stiffer legs [28], [70].
Conversely, AMOS softens its legs when the speed of its
leg motion is increased from the slow gait to the fast one.
This finding may reflect a control strategy of polyped (i.e., >

two legs) locomotion where polyped systems soften the legs
owing to energy efficiency requirements [3]. Our experimental
results also show that the fast caterpillar gait (i.e., S = 0.10)
allows AMOS to achieve softer leg motions which lead to
more energy-efficient locomotion on all experimental surfaces
(see COTs in Fig. 14), compared to the slow wave gait (i.e.,
S = 0.02). Note that errors during swing phases result from
delayed feedback, which makes the phase differences between
the real and predicted forces (see Fig. 17). However, in this
paper, the stiffness parameters are adjusted only to reduce the
errors during stance phases. The large errors during swing
phases are currently ignored for adjusting stiffness parame-
ters. During the swing phases, the stiffness parameters are
kept fixed as the stiffness parameters from the previous stance
phases.

C. Adaptive Leg Compliance for Walking on
Different Surfaces

Actively adjusting stiffness parameters K16×1 and K26×1 also
leads to adaptive locomotion on different surfaces, for example,
when an intermixed gait (i.e., modulatory input S = 0.12) was
chosen for AMOS to walk on fine and coarse gravel, respec-
tively. On these two surfaces, AMOS joints receive the same

outputs1 of the MNN (see Fig. 2). One can see that the TC
joint motions of the left front leg are the same [see Fig. 13(a)]
because they are controlled only by feed-forward neural con-
trol (i.e., without passive elements). By contrast, CTr and
FTi joint motions are different [see Fig. 13(b) and (d)] dur-
ing stance phases when AMOS walks on fine and coarse
gravel, respectively. This is because TC, CTr, and FTi joints
act with different roles (i.e., compliance or actuation, see more
details in Fig. 5 of supplementary material) for controlling
leg motions in stance phases. Moreover, we can see that
the CTr and FTi joints are stiffer2 [i.e., higher K14,1 and
K24,1 values, see Fig. 13(c) and (e)] when AMOS walked
on coarse gravel, compared to fine gravel. This makes the
legs penetrate more deeply, but also extend more widely
into the coarse gravel [see CTr and FTi joint motions in
Fig. 13(b) and (d)]. The video of the experiments can be
seen at http://www.youtube.com/watch?v=-Du62APFUt0.

D. Energy Efficient Walking

In the previous sections, we show that the proposed neu-
romechanical controller coupled with sensorimotor learning
enables AMOS to produce coordinated and variable com-
pliant joint motions that accommodate different gaits and
surfaces. For each surface, nine gaits (see Fig. 2 in supple-
mentary material) were chosen by changing the modulatory
input S [see (2)] of the MNN (see Fig. 2). The variable
compliant joint motions lead to different energy efficien-
cies of AMOS walking on fine gravel, coarse gravel, elastic
sponge (stiffness 0.523 kN/m), and grass land. Typically,
the energy efficiency is measured by COT (i.e., specific
resistance [18], [76]) as

COT = Pavg

mgvavg
, vavg = d

t
(14)

where Pavg is average power consumption. mg is the weight of
AMOS, i.e., mg = 52.974 N. vavg is its average forward speed
when AMOS walks a distance d using time t. For each gait,
we repeatedly ran the hexapod robot on each surface until ten
successful runs were obtained. For each successful run, the
average power consumption Pavg is calculated based on the
electrical current supplied to all motors of AMOS, which is
measured by a current sensor. Low COT corresponds to more
energy efficient walking.

Fig. 14 shows COTs when AMOS walked on the four sur-
faces using the nine gaits. One can see that AMOS achieves
more energy efficient walking by using gaits with intermediate
leg speeds, compared to a slower leg speed (i.e., modulatory
input S = 0.02, the slow wave gait) or a faster leg speed
(i.e., S = 0.18, the fast tripod gait). Moreover, different gaits
let AMOS consume different energetic costs. For instance,
the slow intermixed gait (i.e., S = 0.12) enables AMOS to
achieve more energy efficient walking on fine gravel [see
Fig. 14(a)] while the fast intermixed gait (i.e., S = 0.14)

1In this paper, the same modulatory input S of the MNN corresponds to
the same neural outputs [i.e., N1−18 in Fig. 2(IV)].

2A joint greatly resists the influence of external forces, and is thus “stiff.”
Whereas, a joint allows external forces to influence its movement easily,
and is thus “soft” [75].

http://www.youtube.com/watch?v=-Du62APFUt0
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Fig. 14. Energy efficiencies of AMOS walking on different surfaces using different gaits. The energy efficiency is measured by COT [i.e., specific resistances,
see (14)]. Lower COT corresponds to more energy efficient locomotion. Nine gaits (see Fig. 2 in supplementary material) were chosen for AMOS walking
over each experimental surface. (a) COTs on fine gravel. The slow intermixed gait (i.e., S = 0.12) enables AMOS to achieve more energy efficient walking.
(b) COTs on coarse gravel. The fast intermixed gait (i.e., S = 0.14) is more energy-efficient for its walking on this surface. (c) COTs on elastic sponge. The
slow caterpillar gait (i.e., S = 0.08) is the optimizer gait. (d) COTs on grass land. The fast caterpillar gait (i.e., S = 0.10) allows AMOS to achieve more
energy efficient walking.

Fig. 15. COTs of small legged robots. (a) Millirobot enabled diagnostic of integrated circuits [71]. (b) RHex [18]. (c) Harvard ambulatory microrobot2 [72].
(d) Dynamic autonomous sprawled hexapod [73]. (e) Gregor I [74]. (f) AMOS.

is an efficient gait for AMOS walking on coarse gravel
[see Fig. 14(b)]. The slow (i.e., S = 0.08) and fast (i.e.,
S = 0.10) caterpillar gaits make AMOS achieve more energy
efficient walking on elastic sponge and grass land, respectively
[see Fig. 14(c) and (d)]. The video of the experiments can
be seen at http://www.youtube.com/watch?v=SrasTYQG8Xk.
Integrating neuromechanical control and sensorimotor learn-
ing, the adaptive neuromechanical controller (see Fig. 1)
enables AMOS to achieve adaptive compliant walking, which
effectively accommodates different gaits and surfaces. Such
walking is achieved by online adjusting stiffness parameters
K16×1 and K26×1 [see (12), (13)] of the passive elements driv-
ing the FTi and CTr joints. Note that all damper parameters
D(1, 2)m,1 [see (6), (8)] were set to 1.0 in all experiments
chosen by trial and error. As a result, the adaptive neurome-
chanical controller (see Fig. 1) reduces COT of AMOSs walk-
ing to between 3.4 and 11.7, compared to [21]. Similarly, the
adaptive neuromechanical controller allows for lower COT that
corresponds to more energy efficient walking [see Fig. 16(a)],

TABLE I
TIMES OF STANCE PHASES AND DELAYS VARY WITH S

compared to the adaptive neural controller from [22]. This
is because the adjustable VAAMs of the adaptive neurome-
chanical controller produce high amplitude and smooth joint
outputs during the stance phase [see Fig. 16(b)], which basi-
cally stiffen the legs and allow them to penetrate deeply into
challenging surfaces (e.g., coarse gravel). By contrast, other
neural controllers [30] like the adaptive neural controller [22]
cannot achieve this due to the lack of muscle-like mecha-
nisms (e.g., VAAMs). Moreover, the adaptive neuromechanical
controller makes AMOS achieve more energy efficient walk-
ing (see Fig. 15), compared to other small legged robots
(less than 8 kg [37]).

http://www.youtube.com/watch?v=SrasTYQG8Xk
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(a)

(b)

Fig. 16. COTs and CTr joint outputs under the adaptive neuromechanical
(see Fig. 1) and neural [22] controllers. The experimental surface is the coarse
gravel. (a) COTs. (b) CTr joint outputs O10 (with the fast intermixed gait,
modulatory input S = 0.14).

(a)

(b)

(c)

Fig. 17. Real and predicted contact forces at the left front leg. Here the slow
wave (modulatory input S = 0.02), fast caterpillar (S = 0.10), and fast tripod
(S = 0.18) gaits were chosen on fine gravel, respectively. All delay times are
not larger than 0.10 s, although they increase with the increasing S. See the
delay times between the real and predicted contact forces at Table I.

IV. CONCLUSION

The proposed method (see Fig. 1) enables the six-legged
robot AMOS to achieve variable compliant joint motions
with self-adjustments that accommodate different gaits and
surfaces. These motions are generated by online tuning 12
stiffness parameters (i.e., K1m,1 and K2m,1, m = 1, 2, . . . , 6)
of the muscle-like mechanisms (i.e., the VAAMs) driving 12
joints. This online tuning is achieved by sensorimotor learning

(see Fig. 1) only with force feedback at the end effectors
of the legs. It is distinct from active compliance/impedance
control which is achieved by using force/torque feedback at
each joint of robotic systems [77], [78]. Moreover, active
compliance/impedance control often gives rise to unstable
locomotion on tough terrain (see VMC in Fig. 6) [57], [58].
Whereas our method utilizes the proximo-distal gradient to
enhance locomotor stability on tough terrain (e.g., gravel) (see
Figs. 4 and 5 in supplementary material). Our method also dif-
fers from passive compliance, which is characterized by phys-
ical passive components (e.g., springs and dampers [79]) [80].
In addition, the proposed VAAM is a computational mus-
cle model which can be easily applied to control physical
legged robots [21], [38]. Thereby, the VAAM is also different
from the Hill’s muscle model [81] where there are typically
16 parameters to be tuned, usually used in computer sim-
ulations [29]. In conclusion, the main contribution of the
work introduced here is that we present a way forward to
understand and solve Bernstein’s problem [15] of how to effi-
ciently control many DOFs in multilegged locomotion tasks.
This allows the six-legged robot AMOS to achieve adaptive
and energy efficient walking without complex passive com-
ponents or force/torque sensing systems. Due to the simple
forward models of the proposed sensorimotor learning, the
real contact forces lag (e.g., delay) behind the predicted con-
tact forces (see Fig. 17). One can see that such delays slightly
increase (see Table I) when the modulatory input S of the
MNN increases. Thus, for future work, we will replace the
simple forward models with advanced ones, like reservoir-
based online adaptive forward models [82]. It has been shown
that such reservoir-based forward models can accurately pre-
dict sensory feedback and are robust to variation of delayed
feedback. Another option is to use another learning method,
like deep learning [83].
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