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Abstract

Tracking an acoustic signal in motion is pertinent in several domains such as human-robot interaction and search-and-rescue
robotics. Conventional approaches to acoustic tracking acquire time-of-arrival-difference signals from multi-microphone arrays and
localise the acoustic signal using Kalman or particle filtering, generalised cross-correlation or steered response power techniques.
The authors have previously developed a biologically-inspired mechanism that utilises two microphones to reactively track an
acoustic signal in motion. The mechanism leverages the directional response of an mathematical model of the lizard peripheral
auditory system to extract information regarding sound direction. This information is utilised by a neural machinery to learn the
acoustic signal’s velocity through fast and unsupervised correlation-based learning adapted from differential Hebbian learning.
This approach has previously been validated in simulation and via robotic trials to track a continuous pure tone acoustic signal
with a semi-circular motion trajectory and a constant but unknown angular velocity. The neural machinery has been shown to be
able to learn different target angular velocities in independent trials. Here we extend our previous work by demonstrating that an
identical instance of the mechanism can be used to successfully predict the future spatial location of an acoustic signal with an
identical semi-circular motion trajectory and a constant but unknown angular velocity. We evaluate the prediction performance of
the simulated mechanism in independent trials for three different angular velocities.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of the 2016 IEEE International Symposium on Robotics and Intelligent
Sensors (IRIS 2016).
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1. Introduction

Predicting the future spatial location of an acoustic signal can be relevant in several applications. Verbal human-
robot interaction in social robots is deemed richer if the robot’s auditory focus is oriented and maintained towards
the speaker1,2 throughout their spatial trajectory via appropriate acoustomotor responses, for example a human walk-
ing around in a room while addressing the robot via speech commands. In audio-visual teleconferencing systems,
automatically steering microphone systems that follow a speaker as they move about in a room could dynamically
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maximise the power of the incoming audio signal or orient the camera towards the current speaker3,4. In robot phono-
taxis, the robot could localise acoustic sources and navigate towards them5,6.

Tracking an acoustic signal along an unknown but fixed motion trajectory with an unknown but constant velocity
entails knowledge of its instantaneous spatial location. Depending on the sound frequency, either the sound level dif-
ference (interaural intensity difference or IID), the time-of-arrival-difference of sound (the interaural time difference
or ITD) or both can be used for instantaneous localisation. This necessitates an arrangement with at least two micro-
phones with a fixed displacement between them. Successful repetition of this localisation at a sufficiently fast rate can
then minimise the tracking error. Here we attempt to predictively track an acoustic signal in motion using only ITD
information. An acoustic signal in motion in a given direction and a constant velocity with respect to the microphones
generates dynamically varying ITD cues. The microphone separation and the relative instantaneous position of the
acoustic signal with respect to the median plane determine the instantaneous values of these cues. The rate of variation
of these cues is dependent on the relative velocity of the acoustic signal. Tracking an acoustic signal in motion there-
fore entails the transformation of such velocity- and relative position-dependent cues into some desired behaviour.
For orientation behaviour that requires a motor response, any processing delays in the sensorimotor pathway must be
compensated for and this is possible by extrapolating the target’s motion and thus predicting its future position.

Common techniques for reactive acoustic target tracking extract ITD information via multi-microphone arrays7,8,9

with at least 4 microphones that are arranged as either linear, square or circular arrays or are spatially distributed.
These techniques use particle filtering algorithms10,11 to compute the relative sound source location from raw ITD
data; conventional approaches12,13,14,15,16 are based on generalised cross-correlation17 or steered response power18,19.
A greater number of microphones can improve localisation accuracy, but this requires greater computational complex-
ity and expensive hardware to synchronise and process multi-channel acoustic signals. However, to the best of our
knowledge predictive robotic tracking of moving sound has not been reported in the literature.

We have previously reported a reactive tracking mechanism20 with two microphones, which couples a model
of the lizard peripheral auditory system21 with a neural learning machinery. The lizard peripheral auditory system
provides relative directional information about the acoustic signal. It has been extensively studied via bio-faithful
mathematical modelling utilising biophysical data in vivo to determine the parameters of the model, as well as via
various robotic implementations22. The mechanism has been validated in simulation and in robotic trials for reactive
acoustic tracking where it learned various target angular velocities in separate trials20. We extend our earlier work in
the following manner. We implement an identical instance of the previously proposed neural mechanism in a robotic
agent in simulation to first learn the constant but unknown angular velocity of a virtual and continuous pure tone
acoustic signal in motion following a semi-circular trajectory. We then demonstrate that, by removing the criterion
that stops the learning in the learning algorithm, the learning continues stably after the correct target angular velocity
has been learned. The mechanism subsequently learns a new angular velocity that allows the robotic agent to predict
and orient towards the future spatial location of the target.

The remainder of this article is structured as follows. The lizard peripheral auditory model and its directional
response is described in Sect. 2. Section 3 describes the neural mechanism and the experimental setup. Prediction
performance of the proposed approach is reported in Sect. 4. The research is summarised in Sect. 5 and further research
is highlighted.

2. Background

The remarkable directionality, i.e. the ability to extract the relative position of a relevant acoustic signal, of the
lizard peripheral auditory system23,24 found in Gekko gecko (commonly known as the tokay gecko, Fig. 1A) can be
attributed to the internal acoustical connection between the animal’s two eardrums established by efficient sound
transmission via passages in the head’s interior (Fig. 1B). Although the eardrum separation for most lizard species is
between 10–20 mm there is strong response to sound wavelengths within 340–85 mm (corresponding to sound fre-
quencies within 1.0–4.0 kHz), where the sound diffracting over the animal’s head results in insignificant sound pres-
sure difference between the eardrums and thus almost negligible (1–2 dB) IID information24. The system essentially
converts µs-scale interaural phase differences between sound at the two eardrums (which correspond to ITDs) into
relatively greater (up to 40 dB) interaural vibrational amplitude differences23 that encode sound direction information.
The superposition of two acoustic components determines each eardrum’s vibrations–an external sound pressure at the
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Fig. 1. A. A tokay gecko eardrum (modified from 24). B. Cross-section of the Sceloporus lizard peripheral auditory system (borrowed from 23). C.
Electrical circuit equivalent of the peripheral auditory system (based on 25,26 and redrawn from 27). D. Directionality as binaural subtraction of the
two eardrum responses [Eqn. (1)]. The response is good within a 1.0–2.2 kHz range, with a peak response at approx. 1.6 kHz.

eardrum’s periphery and an internal equivalent sound pressure at its interior generated due to acoustic interference in
the internal passages. Therefore the ear nearer to the relevant acoustic signal exhibits stronger vibrations as compared
to the ear more distant from it, and the vibration intensities depend on the sound frequency and the interaural phase
difference. An equivalent electrical circuit modelled after the peripheral auditory system25,26 (Fig. 1C) allows the
directionality to be visualised (Fig. 1D) as the difference between the vibrational amplitudes iI and iC of the ipsilateral
(towards the acoustic signal) and contralateral (opposite to the acoustic signal) eardrums respectively, as given by∣∣∣∣∣ iI

iC

∣∣∣∣∣ =

∣∣∣∣∣GI · VI + GC · VC

GC · VI + GI · VC

∣∣∣∣∣ ≡ 20
(
log |iI| − log |iC|

)
dB . (1)

Frequency-dependent gains GI and GC respectively reflect the effect of sound pressure on the ipsilateral and con-
tralateral eardrum motion. They are determined experimentally from eardrum vibration measurements via laser vi-
brometry23 and are digitally implemented as 4th-order infinite impulse response bandpass filters. The ratio iI

iC
is

positive for |iI| > |iC| and negative for |iC| > |iI|. The model’s symmetry implies that
∣∣∣∣ iI

iC

∣∣∣∣ is identical with respect to
the median at θ = 0◦ as well as locally symmetrical within the pertinent range of sound direction [−90◦,+90◦]. Equa-
tion (1) defines a differential signal whose sign specifies sound direction as arriving from the ipsilateral (positive sign)
side or from the contralateral (negative sign) side. Its magnitude relates non-linearly to the relative angular position
of the acoustic signal with respect to the midpoint of the head.

3. Materials and methods

We define the task of acoustic motion extrapolation as follows–a robotic agent must learn an appropriate angular
velocity that aligns the agent sufficiently quickly with the extrapolated future spatial location of an acoustic signal in
motion. The signal moves with an unknown but constant angular velocity in a given direction along a pre-defined arc-
shaped semi-circular trajectory. To solve this task we devise an adaptive closed-loop learning mechanism20 embedded
in the task environment (Fig. 2A). The mechanism combines the auditory processing of the lizard peripheral auditory
model, which provides sound direction information and the Input Correlation (ICO) learning algorithm28, which learns
appropriate synaptic weights that determine the agent’s angular velocity. The synaptic weights encode the temporal
relation between the sound direction perceived by the lizard peripheral auditory model preceding and succeeding the
agent’s spatial rotations. Since this relation is inversely proportional to the angular velocity of the acoustic signal, a
fixed set of synaptic weights can only represent a fixed angular velocity and these must be re-learned for a new angular
velocity.

The experimental setup in simulation (Fig. 2B) comprises a two-dimensional virtual loudspeaker array, with 37
loudspeakers arranged in a semi-circle, which generates relevant tones. Consecutive loudspeakers are separated by a
5◦ angular displacement. Acoustic motion is simulated by sequential playback, one loudspeaker at a time, beginning
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Fig. 2. A. The closed-loop learning mechanism. It computes angular velocity ω, defined as the angular deviation per time step, required to align the
robotic agent with the extrapolated future spatial location of the acoustic signal in one time step. During learning, ω is converted into corresponding
ITD information via the environmental transfer function H. The peripheral auditory model PAM converts these cues into a differential signal x(t)
[Eqn. (1)] that encodes information about sound direction. Decomposition of x(t) into its frequency components xk(t), where k = 1, . . . ,N, is done
by a filter bank to extract frequency information. The filter bank comprises five bandpass filters, each implemented digitally as a second-order
infinite impulse response filter. The centre frequencies of these filters lie at every 200 Hz between 1.2–2.0 kHz. Each filter has a 3 dB cut-off

frequency of 200 Hz. Due to the non-linear response of the peripheral auditory model to sound frequency, in the absence of sound frequency
information it provides ambiguous sound direction information, thus necessitating a filter bank. The magnitude responses of the filters represent
spectro-temporal receptive fields 29 of individual auditory neurons, i.e. the range of sound frequencies that provide optimal neuronal stimulation.
xk(t) are correlated with the derivative of x0(t) to update the synaptic weights ρk. xk(t) are “predictive” signals that determine the future spatial
location of the acoustic signal before turning, while x0(t) is the “retrospective” signal generated after turning. B. The experimental set-up in
simulation (taken from 20).

from either end of the array. Sound continuity is maintained by instantaneous playback of consecutive loudspeakers,
thus simulating an acoustic signal in continuous motion, albeit in discrete steps. The angular velocity, defined as the
angular displacement in radians every 10 time steps, is set by playing any given loudspeaker for 10 time steps. This
process is repeated until the end of the array is reached, marking the end of one learning iteration. The direction of
acoustic motion is from loudspeaker #1 to the left to loudspeaker #37 to the right of the array. The robotic agent
rotates on a fixed axis perpendicular to and passing through the centre point of the diameter of the semi-circle. To
predict the future spatial location of the acoustic signal, the robotic agent must first determine the signal’s angular
velocity and then extrapolate its motion by turning with a adequately greater angular velocity to align with the next
spatial location of the acoustic signal along its trajectory in one time step.

The learning takes place as follows. Initially the robotic agent is oriented towards a randomly chosen spatial
location (97◦). Loudspeaker #1 then plays a 2.2 kHz tone signal, a frequency chosen to ensure that the peripheral
auditory model can extract adequate directional cues, and the robotic agent uses this information to compute xk(t) and
estimate the angular velocity [Eqn. (2)] with which to turn towards the said loudspeaker. After completing the turn,
the robotic agent again uses the extracted sound direction information to compute x0(t + δt) and updates the synaptic
weights ρk appropriately [Eqn. (3)]. This process is repeated for each loudspeaker.

ω = ρ0x0 +

N∑
k=1

ρkxk, where N = 5 (2)

dρk(t)
dt

= µxk(t)
dx0(t)

dt
, where k = 1, . . . ,N (3)

We evaluate the motion extrapolation performance for three separate target angular velocities – 5◦/ 10 time steps,
10◦/ 10 time steps and 15◦/ 10 time steps. For all trials, we set the learning rate µ to 0.0001 and the synaptic weight
ρ0 to 0.00001. We initialise all plastic synaptic weights ρk to zero. In our earlier work a stopping criterion halted
the learning when the robotic agent oriented to within 0.5◦ of the currently playing loudspeaker20. Here we remove
this constraint and allow the learning to progress until the synaptic weights stabilise, but the maximum number of
iterations is limited to 150 to reduce the simulation run time. After the learning stops, the learned synaptic weights
are frozen and serve to compute the angular velocity required to extrapolate and align with the future spatial location
of the acoustic signal.
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4. Results and discussion

The learning can be divided into two phases – a reactive phase where the robotic agent learns the target’s angular
velocity and is able to orient towards the currently playing loudspeaker within one time step and a predictive phase
where the robotic agent exceeds the target’s angular velocity and learns the correct angular velocity that allows it to
orient itself towards the next loudspeaker along the trajectory within one time step. Figure 3A shows the tracking error
θe during the reactive phase for a target angular velocity of 15◦/ 10 time steps as an example. The spikes in θe visible
in the inset represent a mismatch between the last orientation of the robotic agent and the current spatial location of
the acoustic signal. This produces finite ITD information that is used by the lizard peripheral auditory model to extract
directional information about the acoustic signal. The robotic agent then rotates towards the acoustic signal with the
last learned angular velocity, thereby decreasing θe. At each time step, this process is repeated, thereby reducing the
tracking error exponentially. In the predictive phase (Fig. 3B) the robotic agent’s learned angular velocity exceeds
that of the target and it overshoots the target in one time step by a progressively larger amount at every iteration. The
overshoot at any given time step is compensated for by a small amount in the next time step due to sign reversal of
xk(t) in Eqn. 1, decreasing the synaptic weights and causing a progressively greater overshoot in the opposite direction.
This leads to exponentially growing oscillations of the robotic agent around the currently playing loudspeaker. The
oscillations stabilise when the synaptic weight updates in either direction are matched (Fig. 3C). Table 1 lists the
predicted angular displacements and the corresponding prediction errors ∆θe, which are relatively small in all trials.

Table 1. Prediction tracking performance for the three target angular velocities.

Target angular velocity (angular displacement / 10 time steps) Predicted angular displacement Prediction error ∆θe

5◦/ 10 time steps 10.02◦ 0.02◦

10◦/ 10 time steps 20.75◦ 0.75◦

15◦/ 10 time steps 31.75◦ 1.75◦

5. Conclusions

We have reported on a neural closed-loop learning mechanism for acoustic motion extrapolation. It allows a
robotic agent in simulation to predict the future spatial location of a virtual acoustic signal in motion along a fixed
semi-circular trajectory with a constant but unknown angular velocity. The mechanism successfully computes the
agent’s angular velocity that aligns the agent towards the future spatial location of the acoustic signal by correlating

Fig. 3. Predictive tracking performance for a target angular velocity of 15◦/ 10 time steps. The insets show snapshots for an iteration. A. Tracking
error θe for the reactive phase where the robotic agent matches the target’s angular velocity. B. Tracking error θe for the predictive phase where
the synaptic weights stabilise and the robotic agent learns the correct angular velocity that predicts the target’s future position. C. Evolution of
the synaptic weights ρk. The solid vertical line marks the instant at which the angular velocity ω of the robotic agent matches the target’s angular
velocity. The inset shows the evolution of the synaptic weights ρk for the last two iterations after they have stabilised.
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the sound direction, perceived by a lizard peripheral auditory model, preceding and succeeding the agent’s spatial
rotations. The next step is to validate these results in an identical experimental setup in the real world by realising
the neural learning mechanism on a mobile robot. The proposed approach can also be applied to spatial tracking of
speech by tuning the lizard peripheral auditory model parameters to respond to human speech. The neural machinery
itself is agnostic to the sensory modality used and can also be applied to visual motion extrapolation.
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