
Modular Neural Control for Object
Transportation of a Bio-inspired Hexapod Robot

Chris Tryk Lund Sørensen and Poramate Manoonpong*

Embodied AI and Neurorobotics Lab, Centre for BioRobotics, Mærsk Mc-Kinney
Møller Institute, University of Southern Denmark, Odense M, Denmark

(chsoe14@student.sdu.dk, *poma@mmmi.sdu.dk)

http://ens-lab.sdu.dk/

Abstract. Insects, like dung beetles, can perform versatile motor be-
haviors including walking, climbing an object (i.e., dung ball), as well
as manipulating and transporting it. To achieve such complex behaviors
for artificial legged systems, we present here modular neural control of
a bio-inspired hexapod robot. The controller utilizes discrete-time neu-
rodynamics and consists of seven modules based on three generic neural
networks. One is a neural oscillator network serving as a central pattern
generator (CPG) which generates basic rhythmic patterns. The other
two networks are so-called velocity regulating and phase switching net-
works. They are used for regulating the rhythmic patterns and changing
their phase. As a result, the modular neural control enables the hexapod
robot to walk and climb a large cylinder object with a diameter of 18
cm (i.e., ≈ 2.8 times the robot’s body height). Additionally, it can also
generate different hind leg movements for different object manipulation
modes, like soft and hard pushing. Combining these pushing modes, the
robot can quickly transport the object across an obstacle with a height
up to 10 cm (i.e., ≈ 1.5 times the robot’s body height). The controller
was developed and evaluated using a physical simulation environment.

Keywords: Object manipulation, Locomotion, Modular neural network,
Central pattern generator, Walking machines, Autonomous robots

1 Introduction

Over the last few decades, a number of animal-like walking robots have been
developed. Most of them can perform only locomotion, like walking [1], climb-
ing [2], and swimming [3]. Typically, if object manipulation or transportation
tasks are required, additional manipulators/grippers need to be installed [4,5,6]
instead of using existing legs. This becomes energy inefficient due to added load
and the requirement of additional energy to power the manipulator or gripper
system. Only a few works have shown walking robots which can locomote and
transport an object using existing legs [7,8,9]. However, these robots require pre-
cise kinematic and force control; thereby they can only move or hold an object
with the stop-and-go motion. In other words, they cannot perform continuous
movements for transporting an object, especially a large one.

http://ens-lab.sdu.dk/
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In contrast, dung beetles with little neural computing can use their legs to
continuously walk and at the same time move large objects - dung balls that
can be larger than their body size [10]. In order to do so, the beetle walks
backwards, climbs onto it, and uses its hind legs sometimes together with its
middle legs to push the ball while its front legs are for walking. Inspired by
the strategy of the beetle, we present here a modular neural control approach
which allows a bio-inspired hexapod robot to walk backwards with a tripod gait,
autonomously climb a large cylinder object, and use its hind legs to manipulate
(i.e., push) the object while its front and middle legs are for walking. This results
in continuous locomotion as well as object manipulation and transportation.
With this technique, the robot can even perform different object manipulation
modes including soft push, hard push, and boxing-like motion. A combination of
soft and hard pushing strategies enables the robot to effectively transport a large
cylinder object (larger than its body height) across an obstacle. We believe that
the study in this direction will expand the usability of robots towards domains,
like transportation and agriculture, in which (autonomous) mobile robots with
multi functions are in high demand.

However, the rationale behind this study is not only to demonstrate the hexa-
pod robot with multi functions (i.e., locomotion with object manipulation and
transportation) but also to show that such complex functions can be achieved
by a combination of neural modules. This pure neural network control has a
layered, modular architecture which is inspired by the biological neural systems
of insects [11]. Such a structure is also considered as a major advantage [12],
compared to many other controllers [1], since it is able to deal with transferring
and scaling issues; i.e., applying to different robots [13,14,15]. Thus, this mod-
ular neural control approach can be a powerful technique to solve sensorimotor
coordination problems of many degrees-of-freedom systems (like walking robots)
and to effectively provide complex multi functions to the systems.

2 Modular Neural Control for Object Transportation

To control the locomotion and object manipulation of a bio-inspired hexapod
robot for continuous transporting an object, we employ neural mechanisms as the
key ingredient of our controller. Although different methods [1] can be employed
for the task, this neural control with a layered, modular architecture is selected
in order to provide a basic control structure to the hexapod robot system. This
way, neural learning mechanisms with synaptic plasticity for control parameter
adaptation [16] could be later applied to obtain adaptive behavior.

The modular neural control is manually designed in a hierarchical way with
seven neural modules (CPG, PSN1-4, and VRN1-2, Fig. 1(a)). There are four
inputs I1,2,3,4 (Fig. 1(a)) which are used to activate different motor patterns
for forward/backward walking and different object manipulation modes. The
complete structure of this modular neural control and the location of the corre-
sponding motor neurons on the hexapod robot are shown in Fig. 1. The struc-
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Fig. 1. (a) Modular neural control for locomotion and object manipulation. It is man-
ually designed where its connection weights and inputs I1,2,3,4 are tuned to obtain
desired behavior (e.g., locomotion, object manipulation, etc). Switching from one be-
havior to the other is achieved by manually setting the input values. By activating
locomotion using the front and middle legs and object manipulation using the hind
legs of a bio-inspired hexapod robot, the robot can perform object transportation (i.e.,
contiguously transporting a cylinder object). Abbreviations are: BJ = a backbone
joint, TL(R) = thoraco-coxal joints of left (right) legs, CL(R) = coxa-trochanteral
joints of left (right) legs, FL(R) = femur-tibia joints of left (right) legs. (b) The sim-
ulated bio-inspired hexapod robot using the LPZRobots simulation environment (see
http://robot.informatik.uni-leipzig.de/software). The robot consists of 19 joints: three
joints for each leg and one backbone joint. The robot model is qualitatively consistent
with our real hexapod robot AMOSII [16] in the aspect of size, mass distribution,
motor torque/speed, and sensors. Its joint orientations follow the ones of the dung
beetle Geotrupes stercorarius; i.e., the front legs are oriented slightly to the front
while the middle and hind legs are oriented to the back. (c) The movements of the C-
and F-joints. (d) The location of the motor neurons on the simulated robot and the
movements of the T-joints. Minimum and maximum angles can be seen for all joints
of the right legs where the same values are also set to the left ones.

tural design of the control is based on our previous developed neural locomotion
control [15,16].
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The seven neural modules of the controller are derived from three generic
neural networks1: A neural oscillator network (abbreviated CPG), a velocity
regulating network (VRN), and a phase switching network (PSN). The neural
oscillator network serves as a central pattern generator (CPG) module. It gen-
erates basic rhythmic signals. Here, the output signal C1 of the CPG module
(see Fig. 1(a)) is used to drive the joints of the robot for locomotion and ob-
ject manipulation. To obtain proper motor patterns for locomotion and object
manipulation, the CPG output signal is post-processed at the PSN and VRN
modules. These modules act as premotor neuron networks. Here, the PSN1 and
PSN2 modules receive the CPG output signal through excitatory and inhibitory
synapses; i.e., they obtain the original CPG signal and its inversion. The out-
puts of these PSN modules are projected to the thoraco-coxal (T-) and coxa-
trochanteral (C-) joints through the other PSN modules (PSN3 and PSN4) and
the VRN modules (VRN1 and VRN2). These PSN modules are basically used
to switch the phase of the T- and C-joint signals of the front and middle legs
for forward/backward walking while the VRN modules are to regulate the am-
plitude of the hind legs to obtain different object manipulation modes (e.g., soft
and hard pushing and boxing-like motion) as well as to maintain stability dur-
ing object transportation. Note that the femur-tibia (F-) joints of the front and
middle legs are kept fixed to a certain position while the F-joints of the hind
legs are controlled by I3 for object manipulation.

All these CPG, PSN, and VRN networks are described in details in the fol-
lowing sections. Their neurons are modelled as discrete-time non-spiking neurons
with an update frequency of approx. 10 Hz. The activity of each neuron develops
according to ai(t + 1) =

∑n
j=1 wij oj(t) + bi; i = 1, . . . , n where n denotes the

number of units, bi represents a fixed internal bias term of neuron i, wij the
synaptic strength of the connection from neuron j to neuron i. The neuron out-
put oi is given by a hyperbolic tangent (tanh) transfer function. Input neurons
(I1,2,3,4) are here configured as linear buffers (ai = oi). All connection strengths
together with bias terms are indicated by the small numbers (Fig. 1(a)) except
w1−10 which are modulatory synapses (see section below for details). These fixed
bias and synaptic connection values are here empirically set to obtain the desired
locomotion and object manipulation patterns. However, they can be changed de-
pending on robot configuration, e.g., the position of actuators.

2.1 Neural Oscillator Network (CPG)

The concept of central pattern generators (CPGs) for legged locomotion [11] has
been studied and used in several robotic systems in particular walking robots.
Here, the model of a CPG is realized by using the discrete-time dynamics of a
simple 2-neuron oscillator network with full connectivity (see Fig. 1(a)). Such a
CPG model has been successfully used for locomotion control [15]. We empiri-
cally adjust the synaptic weights of this network to achieve a proper frequency

1 These networks have been successfully applied for locomotion control of various robot
systems [15,14,16]. They are, for the first time here, employed for locomotion and
object manipulation and transportation of a bio-inspired hexapod robot.
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of leg movements for stable locomotion and object manipulation. Figure 2 shows
the outputs from the CPG network.
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Fig. 2. (a) The periodic output signals from the CPG with the defined parameters
shown in Fig. 1(a). Here we use the output signal C1 for generating locomotion and
object manipulation. (b) The phase space with the quasi-periodic attractor of the
oscillator network [17].

2.2 Phase Switching Network (PSN)

To obtain different modes (i.e., forward/backward locomotion and object ma-
nipulation), one possibility is to reverse the phase of the periodic signals driving
the T- and C-joints (Fig. 1). That is, these periodic signals can be switched to
lead or lag behind each other depending on the given input I1. To do so, we use
four phase switching network (PSN) modules (PSN1-4). The PSN was developed
in our previous study [15]. It is a hand-designed feedforward network consisting
of four hierarchical layers with 14 neurons P1−14 (Fig. 3). The synaptic weights
and bias terms of the network were determined in a way that they do not change
the periodic form of its input signals and keep the amplitude of the signals as
high as possible (i.e., between −0.5 and +0.5). The detail of the network de-
velopment is referred to [15]. For our implementation here (Fig. 1(a)), P1,2 of
the PSN1 and PSN2 modules receive the CPG signal C1 through an excitatory
synapse (+1) and its inversion through an inhibitory synapse (−1) while their
P3,4 receive the input I1 through the modulatory synapses w1,2 for the PSN1
module and w3,4 for the PSN2 module (Fig. 1(a)). P1,2 of the PSN3 and PSN4
modules in a lower layer receive the outputs P13,14 of the PSN1 module through
an excitatory synapse (+1) while their P3,4 receive the input I1 through the
modulatory synapses w5,6 for the PSN3 module and w7,8 for the PSN4 module
(Fig. 1(a)). The final outputs P13,14 of the PSN3 and PSN4 modules are directly
connected to the motor neurons of the T- and C- joints of the front and middle
legs. The modulatory synapses of all PSN modules (Fig. 1(a)) are modelled as
w1,4,6,7 = I1 and w2,3,5,8 = −I1. In this study, the bias terms b1,2 (Fig. 3(a))
of the PNS1 and PSN4 modules are modelled as input-driven functions and de-

scribed as b1 =
−(I2

1I2(I2+1))
2 , b2 = −b1, while the ones of the PNS2 and PSN3
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modules are set to b1 = −1 and b2 = 0. Note that the input-driven functions
used here will basically activate or deactivate the neurons P3,4 with respect to
the inputs I1,2.
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Fig. 3. (a) The phase switching network of the PSN1 module. The other PSN modules
have the same structure. (b) The inputs of the PSN1 module which come from the
CPG module. (c) The outputs of the PSN1 module where I1,2 are set to (1,1) or (0,1).
The outputs are inverted if I1,2 are set to (1,-1), (-1,-1), or (1,0). Note that the inputs
and outputs of the other PSN modules behave in a similar way.

2.3 Velocity Regulating Network (VRN)

To obtain different object manipulation modes (e.g., soft and hard pushing and
boxing-like motion) and to maintain stability during object transportation, we
need to regulate the signals controlling the T- and C-joints (TL2, TR2,CL2, CR2,
see Fig. 1(a)) of the hind legs. According to this, we use two velocity regulat-
ing network (VRN) modules (VRN1,2) where one is for controlling the T-joints
(TL2, TR2) and the other is for the C-joints (CL2,CR2). The VRN taken from
[15] is a simple feed-forward neural network with two input V1,2, four hidden
V3−6, and one output V7 neurons (Fig. 4). It was trained by using the backprop-
agation algorithm to act as a multiplication operator on two input values on the
neurons V1,2 ∈ [−1,+1] (see [15] for details). For our purpose here, the neuron
V1 of the VRN1 module receives the input I3 through an inhibitory synapse
(e.g., −0.57, Fig. 1(a)) while the one of the VRN2 module receives the input I2
through an excitatory synapse (e.g., 0.3, Fig. 1(a)). The bias term of the neuron
V1 of the VRN1 module is set to 1 while the one of the VRN2 module is set to
0.7 (Fig. 4(a)). The neuron V2 of the VRN1 module receives two inputs (x, y)
from the CPG output C1 and the output P13 of the PSN1 module, respectively,
through the modulatory synapses w9,10 while the one of the VRN2 module re-
ceives only one input (x) from the output P13 of the PSN2 module through an
excitatory synapse (+1, Fig. 1(a)). Additionally, the neuron V2 of the VRN1
module has the bias term b3 which is modelled as an input-driven function and
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described as b3 = 0.02((I21 − I22 )2 + I1I2(I2+I1)
2 )2) while there is no bias term for

the neuron V2 of the VRN2 module (Fig. 4(a)). According to this input-driven
function, b3 will be 0.02 for all cases except soft pushing where it will be zero.
Here, the synaptic weights w9,10 are driven by the inputs I1,2 and described as

w9 = 2((I21 − I22 )2 + I1I2(I2+I1)
2 )2) and w10 = 1 − w9

2 . According to these equa-
tions, w9 will be equal to 2 for all actions except the soft pushing action for
which it will be zero and the weight w10 will be zero for all actions except the
soft pushing action for which it will be one. Finally, the outputs V7 of the VRN1
and VRN2 modules are set to control the C-joints (CL2,CR2) and the T-joints
(TL2, TR2), respectively. Note that all these functions of b3, w9,10 are used to
scale the input signals (x, y) into proper ranges for different behavioral modes.
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Fig. 4. (a) The velocity regulating network of the VRN1 module. The bias b4 is equal
to -2.48285. The VRN2 module has the same structure. (b-e) Different output signals
of the VRN1 module for forward/backward walking (b), hard pushing (c), soft pushing
(d), boxing-like motion (e). The VRN2 output behaves in a similar way.

2.4 Neural Control Parameters for Different Behavior Modes

The integration of the different functional neural modules described above gives
the complete modular neural controller. It can generate different behavioral
modes2 (locomotion, object manipulation, and their combination (i.e., object
transportation)) through the four input parameters I1,2,3,4. Appropriate input
parameter sets for the different modes are presented in Table 1. I1,2 are basically
for generating different motor modes through the PSN and VRN modules while
I3,4, which can vary between −1.0 and 1.0, are for shifting the offsets of the
leg joints upward/downward for object manipulation. Additionally, I3 is used
to scale the CPG and PSN signals through the VRN1 module to obtain proper

2 see http://manoonpong.com/SAB2016/V1.mp4
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movements for soft pushing and boxing-like motion. Note that the input values
shown in Table 1 can be changed with respect to, e.g., robot configuration.

Table 1. Input parameters for different behavior modes.

Actions I1 I2 I3 I4
Locomotion: Forward walking 1 1 0 0
Locomotion: Backward walking 0 1 0 0
Object manipulation: Soft pushing 1 -1 1 1
Object manipulation: Boxing-like motion -1 -1 1 0
Object manipulation: Hard pushing 1 0 0 -0.3

3 Experiments and Results

To evaluate the performance of the developed controller, we used the simulated
bio-inspired hexapod robot (see Fig. 1(b)) with a body height of 6.5 cm and a
weight of ≈ 5 kg and a cylinder object (see Fig. 5(b)) with a length of 60 cm,
a diameter of 18 cm (i.e., ≈ 2.8 times the robot’s body height), and a weight of
2 kg. The friction coefficient of robot feet was set based on a rubber material
used for the feet of the real robot while the friction coefficients of the object
and ground were empirically set to obtain high friction and to avoid slipping
during locomotion and object transportation. With the controller, the robot can
walk forward with a tripod gait and can walk backward by changing the phase
of the T-joints through the PSN2 and PSN3 modules. Note that the C-joint
signals are clipped to ensure that the legs touch the ground during the stance
phase; resulting in a stable walking behavior. Here, the F-joints stay in a certain
position.

To let the robot transport the object, we drive the robot to walk backward.
While walking backward and approaching an object, the robot will automatically
climb the object since we set the backbone joint (BJ) in a slightly bending
position. With this BJ setup, the body of the robot bends slightly upwards;
thereby allowing the robot to swing its hind legs slightly more upwards during
a swing phase and place its leg tips above the center line of the object during
a stance phase. This way, the robot can climb the object. Once the robot has
been stayed on the object partly, which is detected by a body inclination sensor,
specific hind leg movements for different object manipulation modes will be
activated while the front and middle legs remain unchanged. For soft pushing,
the hind legs will slowly roll a cylinder object while the robot walks backward.
For the boxing-like motion, as the word describes, the robot uses the hind legs
to hit or punch the object and in this way move it. For hard pushing, the robot
uses the hind legs to dig under the object in order to make it across an obstacle.

Two main experiments were carried out for our evaluation. The first experi-
ment evaluates an object transportation speed of the robot without an obstacle
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when different object manipulation modes were used. The soft pushing, hard
pushing, and boxing modes, where the hind legs actively move in specific pat-
terns3, were tested. Additionally, we also compare them with a situation where
the hind legs were kept fixed in a certain position (not moving) and stayed on
top of the object to avoid it run away (i.e., stationary mode4). Figure 5 shows
the result of this experiment. It can be seen that the robot can transport or
move the object with the fastest speed (i.e., less time) in a straight backward
direction when the soft pushing mode was used while other modes required more
time to reach the target location. The robot failed to do the task when the hard
pushing mode was used because with this mode it pushed the object away in an
arbitrary direction5.
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Fig. 5. Result of the speed test for object transportation using different object ma-
nipulation modes. (a) The bars show the average object transportation time with the
standard deviation. The time was measured from the starting point to the end point
where the distance is 1.46 m. We performed in total ten tests for each mode. (b) The
startpoint and endpoint locations from which the robot has to transport the object.
Note that in this experiment the robot was activated to walk backward without any
additional steering command.

The second experiment evaluates the performance of the robot with different
manipulation strategies to transport the object across an obstacle at different
heights. The obstacle width was set to 1 mm while the obstacle height was
varied from 2 cm to 11 cm. In total, we tested six strategies including soft
pushing, boxing, stationary, and their combination with hard pushing. For the
combination modes (i.e., soft pushing (Mode1)→ hard pushing (Mode2), boxing
(Mode1) → hard pushing (Mode2), and soft pushing (Mode1) → hard pushing
(Mode2)), we switch from one pushing mode (Mode1) to another pushing mode

3 see http://manoonpong.com/SAB2016/V1.mp4
4 see http://manoonpong.com/SAB2016/V2.mp4
5 see http://manoonpong.com/SAB2016/V1.mp4
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(Mode2) when the object has reached or hit the obstacle. This is detected by the
joint angle sensors of the F-joints of the front legs. If the angle sensors decrease
below a threshold, then the switching occurs. Figure 6 presents the success rate
of object transportation; i.e., the percentage of success from ten experiments
each. A success is considered if the object gets across the obstacle within one
minute. It can be seen that the combination modes outperform individual modes
and allow the robot transport the object across the obstacle at the maximum
height of 10 cm. However, when we take the transportation time into account
the combination of soft pushing (Mode1) → hard pushing (Mode2) is the best
since, with this mode, the robot uses first the soft pushing mode to roll the object
leading to fast transportation speed compared to the others (see Fig. 5) and then
the hard pushing mode to strongly push the object across the obstacle. Figure 7
shows the sensors and motor signals of the robot during object transportation
using the combination of the soft pushing and hard pushing modes6.
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(a) Success rate in a total of ten experiments for each strategy. (b) The startpoint and
endpoint locations from which the robot has to transport the object. In this experiment
the robot was activated to walk backward without any additional steering command.

4 Conclusion

We present the modular neural controller of a bio-inspired hexapod robot. The
controller is derived from three neural networks (CPG, PSN, and VRN). Each
network has its functional origin in biological neural systems (see [14] for de-
tails). The controller can generate various motor patterns for locomotion, object
manipulation, and their combination (resulting in object transportation). Differ-
ent object manipulation strategies can be obtained from the controller. Among
them, the strategy that combines soft pushing and hard pushing allows the robot
to quickly roll a large cylinder object (i.e., ≈ 2.8 times the robot’s body height)

6 see http://manoonpong.com/SAB2016/V3.mp4
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Fig. 7. Example of sensor and motor signals of the hexapod robot for object trans-
portation. The robot first walked backward and then autonomously climbed the object
due to the interaction between the leg movements and the object. Afterwards it per-
formed soft pushing and finally hard pushing to move the object across the obstacle
with a height of 5 cm. The soft pushing behavior was activated by the body inclination
sensor signal (BS). It will be activated if the sensor value is higher than a threshold
after a certain time step. The hard pushing behavior was activated by the joint angle
sensor signals of the F-joints of the front legs. We used the average value of the angle
signals (AS) for this activation. Basically, the hard pushing behavior will be activated
if the value is smaller than a threshold. TL0,1,2 are the thoraco-coxal (T-) joints of the
left front, middle, and hind legs. CL0,1,2 are the coxa-trochanteral (C-) joints of the
left front, middle, and hind legs (see Fig. 1). The F-joints are not shown since they
have constant values. The joint angle signals of the right legs are shown in degree. The
left angle signals are similar to the right ones.

and to strongly push it across an obstacle with a height up to ≈ 1.5 times the
robot’s body height. Although the resulting object transportation behavior is
inspired by the strategy of a dung beetle, the object used in this study is still
smaller than and different from the one that the beetle can transport (i.e., dung
ball). Furthermore, the beetle can also transport the ball on rough terrain using
its middle and hind legs while walking with its front legs. Thus, in the future
work, we will investigate another object transportation mode using the middle
and hind legs to transport a large ball on rough terrain. We will also apply this
approach to a real hexapod robot and test it in a real environment. Acknowl-
edgments: We would like to thank Georg Martius for technical advise about
the LpzRobots simulation software.
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