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Abstract. Acoustic tracking of a moving sound source is relevant in
many domains including robotic phonotaxis and human-robot interac-
tion. Typical approaches rely on processing time-difference-of-arrival cues
obtained via multi-microphone arrays with Kalman or particle filters, or
other computationally expensive algorithms. We present a novel bio-
inspired solution to acoustic tracking that uses only two microphones.
The system is based on a neural mechanism coupled with a model of the
peripheral auditory system of lizards. The peripheral auditory model pro-
vides sound direction information which the neural mechanism uses to
learn the target’s velocity via fast correlation-based unsupervised learn-
ing. Simulation results for tracking a pure tone acoustic target moving
along a semi-circular trajectory validate our approach. Three different
angular velocities in three separate trials were employed for the vali-
dation. A comparison with a Braitenberg vehicle-like steering strategy
shows the improved performance of our learning-based approach.

Keywords: Binaural acoustic tracking, correlation learning, lizard peripheral
auditory system

1 Introduction

There are several applications where acoustic target tracking can be useful.
Human-robot interaction in social robots is deemed to be richer if the robot’s
acoustomotor response maintains its auditory focus on a subject of interest
[16,19]. During phonotaxis a robot can localise acoustic sources and navigate
towards them [22].

Acoustically tracking a sound source moving with fixed but unknown speed
along a fixed but unknown trajectory requires that the relevant sound source
must first be successfully localised in space and then this localisation must be
repeated sufficiently fast to minimise the static tracking error. Localising a sound
can be done using both interaural intensity difference (IID) and interaural time
difference (ITD) cues, requiring a multi-microphone setup with at least two mi-
crophones. Generating IID cues requires a sufficiently large solid obstruction be-
tween the individual microphones to create sound shadows, while ITD cues can



be generated without the need of such obstructions. Here we focus on acoustic
tracking of a moving sound source using only ITD cues. A sound source moving
with a given velocity in a given direction with respect to the microphones gen-
erates dynamic ITD cues. The instantaneous values of these cues vary with the
relative position of the sound source and the speed with which they vary depends
on the relative speed of the sound source. Tracking a moving sound source thus
requires transforming these relative position- and velocity-dependent cues into
a desired behaviour such as robotic orientation or phonotaxis.

Acoustic target tracking has been approached via a number of techniques
[17,7,18,8,11,24,12,13,25]. All techniques use multi-microphone arrays in various
geometric configurations such as linear, square, circular or distributed arrays to
extract ITD cues for localisation. Computationally intensive algorithms are also
a common feature among these techniques.

We present a acoustic tracking system using two microphones that imple-
ments a neural learning mechanism. The mechanism is adapted from Input Cor-
relation (ICO) learning [21] which is derived from a class of differential Hebbian
learning rules [10]. The ICO learning architecture is characterised by its sta-
bility, fast convergence and adaptability via synaptic plasticity all of which are
desirable qualities in an acoustic tracking system. The proposed learning mecha-
nism is coupled with a model of the lizard peripheral auditory system [26] which
provides sound direction information. The peripheral auditory model has been
extensively studied via various robotic implementations as reviewed in [23].

The paper is organised in the following manner. Section 2 describes the lizard
ear model, its directional response and its role in sound localisation. It also briefly
describes ICO learning, which is the basis for the learning mechanism presented
in Sec. 3. The experimental setup is also described in Sec. 3. Section 4 presents
the results of the proposed approach in tracking a moving sound source. Section
5 summarises the research and discusses future directions.

2 Background

2.1 Lizard Peripheral Auditory System Model

Lizards such as the bronze grass skink or Mabuya macularia, and the tokay
gecko or Gekko gecko as depicted in Fig. 1(a), are known for their remarkably
directional peripheral auditory system [3,4]. Thanks to an internal acoustical
coupling of the two eardrums of the animal, formed by efficient transmission of
sound through internal pathways in the head as shown in Fig. 1(b), the lizard
ear achieves a directionality higher than that of any known vertebrate [3].

The lizard peripheral auditory system is small in size (the distance between
the eardrums for most lizard species is 10-20mm) with respect to the sound
wavelengths (340-85mm, corresponding to 1–4kHz) for which it exhibits strong
directionality [4]. For these wavelengths the sound pressure difference between
the ears is negligible due to acoustic diffraction around the animals head, thus
generating negligible (1–2 dB) IID cues. The system thus converts µs-scale inter-
aural phase differences (corresponding to ITDs) between incoming sound waves
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Fig. 1. (a) An eardrum visible on the side of the gecko head (redrawn from [4]). (b)
Early cross-sectional diagram of the lizard (Sceloporus) auditory system (taken from
[3]). (c) Ideal lumped-parameter circuit model (based on [6,5] and taken from [28]). (d)
Contour plot modelling binaural subtraction (refer to Eqn. (2)) of the ipsilateral and
contralateral responses (redrawn from [28]).

at the two ears due to the physical separation, into relatively larger (up to 40 dB)
interaural vibrational amplitude differences [3] which encode information about
sound direction relative to the animal. Each eardrum’s vibrations are the result
of the superposition of two components – an external sound pressure acting on
its outer side and the equivalent internal sound pressure acting on its inner side,
generated due to sound interference in the internal pathways. This process leads
to contralateral (away from the sound source) cancellation and ipsilateral (to-
wards the sound source) amplification of eardrum vibrations. In other words, the
ear closer to the sound source vibrates more strongly than the ear further away
from the sound source. The strengths of the vibrations depend on the relative
phase difference between the incoming sound waves at the two ears.

An equivalent electrical circuit model as shown in Fig. 1(c) of the periph-
eral auditory system [6,5] allows one to visualise the directionality as shown
in Fig. 1(d) as a difference signal obtained by subtracting the two vibrational
amplitudes. The difference signal can be formulated as
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where frequency-dependent gains GI and GC model the effect of sound pressure
on the motion of the ipsilateral and contralateral eardrum respectively. These
gains are analogue filters in signal processing terminology with coefficients deter-
mined experimentally by measuring the eardrum vibrations of individual lizards
via laser vibrometry [3]. Expressing i1 and i2 in decibels,

iratio = 20 (log |i1| − log |i2|) dB . (2)

The model responds well for frequencies between 1-2.2 kHz, with a peak response
at approximately 1.6 kHz. iratio is positive for |i1| > |i2| and negative for |i2| >
|i1|. The model’s symmetry implies that |iratio| is the same on either side of the
centre point θ = 0◦ and is locally symmetrical within the range [−90◦,+90◦]
(considered henceforth as the relevant range of sound direction). The difference
signal given by Eqn. (2) provides sound direction information in that its sign
indicates whether the sound is coming from the left (positive sign) or from the
right (negative sign), while its magnitude corresponds to the relative angular
displacement of the sound source with respect to the median.

2.2 Input Correlation (ICO) Learning

ICO learning [21] is online unsupervised learning in which synaptic weight update
is driven by cross-correlation of two types of input signals – “predictive” signal(s)
which are earlier occurring stimuli and a “reflex” signal which is a later occuring
stimulus arriving after a finite delay and drives a reflex (Fig. 2). The output of
the ICO learning mechanism is a linear combination of the reflex input and the
predictive input(s). The synaptic weight of the reflex input is set to a constant
positive value such as 1, representing an unchanging reflex signal. The learning
goal of ICO learning is to predict the occurrence of the reflex signal by using the
predictive signal, thereby allowing an agent to react earlier. Essentially, the agent
learns to execute an anticipatory action to avoid the reflex. During learning, the
synaptic weight(s) of the predictive signal(s) are updated through differential
Hebbian learning [9,10] using the cross-correlation between the predictive and
reflex inputs. The synaptic weights tend to stabilise when the reflex signal is
nullified [21], which implies that the reflex signal has been successfully avoided.
ICO learning is characterised by its speed and stability and has been successfully
applied to generate adaptive behaviour in real robots [14,15,20].

3 Materials and Methods

The task of acoustic tracking is defined as follows – a robotic agent must learn
the correct angular turning velocity which allows it to rotate sufficiently fast
along a fixed axis so as to point in the direction of the instantaneous position



of a sound source moving with an unknown velocity in a given direction along
a pre-defined semi-circular arc-shaped trajectory. To solve this task we employ
an adaptive neural architecture that combines the auditory preprocessing of the
lizard peripheral auditory model and the neural ICO learning mechanism as
described next.

3.1 The Adaptive Neural Architecture

Figure 2 shows the neural mechanism embedded as a closed-loop circuit in the
task environment. The central idea is for the robotic agent to learn the temporal
relationship between the perceived sound direction before turning and after turn-
ing. The temporal relationship is encoded in the synaptic weights of the neural
mechanism, which are used to calculate the correct angular turning velocity.
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Fig. 2. Neural mechanism for acoustic tracking as a closed-loop system.

The output of the neural mechanism ω is the angular velocity, defined as the
angular deviation per time step, required to turn the robot fast enough to point
at the appropriate loudspeaker in one time step. ω is transformed into corre-
sponding ITD cues via the environmental transfer function H. The peripheral
auditory model (PAM) translates these cues to a difference signal x(t) (given by
Eqn. (2)) which encodes information regarding sound direction. A filter bank de-
composes x(t) into frequency components xk(t), where k = 1, . . . , N , to extract
frequency information. The filter bank comprises 5 bandpass filters, each with
a 3 dB cut-off frequency of 200Hz and center frequencies at 1.2 kHz, 1.4 kHz,
1.6 kHz, 1.8 kHz and 2.0 kHz. This results in N = 5 filtered signals outputs of
the filter bank. This step is necessary beacause in the absence of sound frequency
information the peripheral auditory model provides ambiguous information re-
garding the sound direction. This is because the output of the peripheral audi-
tory model is non-linearly dependent on the sound frequency. The magnitude
responses of the filters in the filter bank represent the receptive fields of individ-
ual auditory neurons. These recpetive fields, better known as spectro-temporal



receptive fields [1], are the range of sound frequencies that most optimally stim-
ulate the neuron. The filtered signals xk(t) are used as inputs which are then
correlated with the derivative of the unfiltered difference signal x0(t). The input
signals xk(t) can be viewed as the predictive signals used to predict the instanta-
neous sound direction before turning, while the unfiltered difference signal x0(t)
can be viewed as the “reflex” or the retrospective signal generated after turning.

In ICO learning, once the reflex signal is nullified, the synaptic weights are
stabilised; thereby generating a behavioural response that prevents future occur-
rences of the reflex signal. Here, as soon as the sound moves to a new position
along its trajectory, a new and finite retrospective signal x0 is generated. This
signal is then nullified after turning, before the sound moves to a new position
along its trajectory. Our approach can therefore be viewed as one successful it-
eration of ICO learning being repeated for each new position of the sound source
as it moves along its trajectory. This implies that the synaptic weights can grow
uncontrollably if the learning is allowed to continue indefinitely. To avoid this
condition, we introduce a stopping criterion for the learning – the learning stops
when the tracking error θe becomes less than 0.5◦. θe is defined as the differ-
ence between the angular deviation of the robot and the angular deviation of
the sound source in one time step. In other words, the learning stops when the
robot is able to point to within 0.5◦ from the position of the sound source within
one time step.

3.2 The Experimental Setup

The experimental setup in simulation, as illustrated in Fig. 3, comprises a vir-
tual loudspeaker array which generates relevant tones. The array comprises 37
loudspeakers arranged in a semi-circle in the azimuth plane. The angular dis-
placement between consecutive loudspeakers is 5◦. To simulate motion of a sin-
gle sound source, the loudspeakers are turned on sequentially starting from the
loudspeaker at one of the ends of the array. To maintain sound continuity and
simulate a continuously moving sound source (albeit in discrete steps), the next
loudspeaker plays immediately after the previous loudspeaker has stopped. A
given tone can thus be moved across the array along a semi-circular trajectory
from either the left or the right with a given angular velocity. The angular veloc-
ity is defined as the angular displacement in radians every 10 time steps. When
a given loudspeaker is turned on, it plays a tone for 10 time steps before it is
turned off and the next consecutive loudspeaker is turned on immediately after-
wards. This process is repeated until the last loudspeaker in the array is reached.
In the current setup, the direction of movement of sound is chosen to be from
the left to the right of the array. The movement of sound from loudspeaker #1
to loudspeaker #37 is defined as one complete iteration. Since one iteration may
be insufficient to learn the correct angular velocity, the process is repeated from
the first to the last loundspeaker until the synaptic weights converge.

The robot that must track the moving sound source is located at the mid-
point of the diameter of the semi-circle and is only allowed to rotate on a fixed
axis. To track the sound source by rotational movements, the robot must turn
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Fig. 3. The simulation setup.

with a sufficiently large angular velocity in order to point towards the instan-
taneous position of sound source before the sound moves to a different position
along its trajectory. The angular velocity of the robot is defined as the angular
rotation per time step. The goal of the learning algorithm is to learn the cor-
rect angular velocity that would allow the robot to turn and point towards the
current loudspeaker in one time step, starting from the time step at which the
given loudspeaker started playing the tone.

The learning takes place as follows. The robot initially points in a random
direction (chosen as 97◦). Loudspeaker #1 emits a 2.2 kHz tone, chosen because
sufficient directional information from the peripheral auditory model is available
at this frequency. The robot uses the extracted sound direction information to
turn towards the current loudspeaker with an angular velocity given by

ω = ρ0x0 +
N
∑

k=1

ρkxk, where N = 5. (3)

After the turn is complete, the robot again extracts sound direction information
via the peripheral auditory model and determines x0(t+δt). Finally, the synaptic
weights ρk are updated according to the learning rule

dρk(t)

dt
= µxk(t)

dx0(t)

dt
, where k = 1, . . . , N. (4)

After this step, loudspeaker #1 is turned off and the next loudspeaker in the
array (loudspeaker #2) emits a tone of the same frequency as earlier and the
learning procedure described above is repeated.

The acoustic tracking performance is individually evaluated for three dif-
ferent angular velocities of the sound source – 0.5◦/ time step, 1.0◦/ time step



and 1.5◦/ time step. For all trials, the neural parameters are set to the following
values – the learning rate µ = 0.0001 and synaptic weight ρ0 = 0.00001. All
plastic synaptic weights ρk are initially set to zero and updated according to
Eqn. (4). The neural mechanism’s performance is also compared with a Braiten-
berg vehicle-like [2] sensorimotor mechanism that generates rotational motion.
The Braitenberg mechanism is simulated by turning off the learning and setting
the weights ρk to constant values. Two sets of randomly-chosen weights are used
– one (ρk = [0.035, 0.0197, 0.0251, 0.0616, 0.0473]) resulting in a relatively small
angular turning velocity and another (ρk = [0.0352, 0.0831, 0.0585, 0.055, 0.0917])
resulting in a relatively large angular turning velocity.

4 Results and Discussion

Figure 4 shows the tracking error θe which reduces exponentially over time for
the three trials. The insets reveal the evolution of θe for the last iteration of
the movement of the sound source. The spikes in θe represents a mismatch be-
tween the position at which the robot was pointing last and the new position
of the sound source. This creates finite ITD cues from which the robot extracts
sound direction information via the peripheral auditory model. The robot then
turns towards the sound source with the last learned angular turning velocity,
reducing the tracking error. This process repeats over each subsequent time step,
exponentially reducing the tracking error, until the stopping criterion is met.
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show θe for a single iteration as an example.



The number of iterations required to reach the stopping criterion, where the
weights stabilise, decreases for increasing angular velocity of the sound source.
This is because the mismatch between the direction at which the robot was
pointing last and the current position of the sound source is relatively greater for
greater angular velocity of the sound source. This results in relatively larger pre-

dictive signals, and consequently a relatively larger correlation term xk(t)
dx0(t)

dt

per time step in Eqn. (4). This consequently results in relatively faster weight
updates, reducing the overall time taken to learn the correct angular velocity.

An example of the predictive signal x5 and the derivative dx0(t)
dt

of the retro-
spective signal x0, for three separate iterations for the sound source moving with
an angular velocity of 1.5◦/ time step, is shown in Fig. 5. The learning results in
faster turns by the robot as indicated by the decreasing slope of x5(t) as shown.
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angular velocity of 1.5◦/ time step. Top panel. The instantaneous position of the sound
and the corresponding loudspeaker designation. Second – fourth panels. Example
snapshots for iteration #38 (second panel), #54 (third panel) and the last iteration
(#79, fourth panel). Bottom panel. The positive-lag cross-correlation of x5(t) and
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for iteration #38 (dotted line), #54 (dashed line) and #79 (solid line).

The maximum correlation as shown in the bottom panel in Fig. 5 between
the predictive and retrospective signals increases as the number of iterations



increases. This confirms that as the synaptic weights increase, consequently in-
creasing the learned angular turning velocity as learning progresses, the correla-
tion between the predictive and retrospective signals also increases, resulting in
an increasing correlation term in Eqn. (4).

Figure 6 shows a comparison of the correlation learning mechanism to the
Braitenberg vehicle-like sensorimotor mechanism for rotational turning. Depend-
ing on the synaptic weights chosen, the angular turning velocity of the robot may
be either less or greater than the angular velocity of the sound source. Thus the
robot either takes a relatively long time to reach the target’s position or over-
shoots the target’s position, resulting in a relatively greater tracking error in
both cases. On the other hand, the learning mechanism allows the robot to learn
a relatively accurate angular turning velocity that closely matches that of the
sound source, resulting in a relatively smaller tracking error.
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Fig. 6. Braitenberg vehicle-like mechanism for rotational turning versus the correlation
learning mechanism. The panels show the evolution of tracking error θe over time in
the last iteration for the sound source moving with an angular velocity of 1.5◦/ time
step. Top panel. The instantaneous position of the sound and the corresponding
loudspeaker designation. Second and third panels. θe for the Braitenberg approach
where the angular turning velocity is less (second panel) and greater (third panel) than
1.5◦/ time step. Bottom panel. θe with correlation learning where the learned angular
turning velocity closely matches with 1.5◦/ time step.

5 Conclusions and Future Directions

A neural mechanism for acoustic tracking is presented which allows a simulated
robotic agent to learn the correct angular velocity necessary to turn and align



itself towards the instantaneous position of a virtual sound source moving along
a semi-circular arc-shaped trajectory. The learning rule correlates the perceived
sound direction information, obtained via a peripheral auditory model of lizard
hearing, before and after turning to update the synaptic weights. The learned
synaptic weights thus correspond to the angular velocity of the sound source.
The mechanism successfully learned three different angular velocities. We aim
to validate the approach as a next step in an identical experimental setup by
implementing the neural mechanism on a real mobile robot.

In the presented approach the robot only turns after the sound source has
moved to a new location along its trajectory. There is a finite and unavoidable
delay between the sound source moving to a new location and the robot com-
pleting its turn. The same mechanism may be used to predict this time delay, so
that after learning the robot would turn fast enough to point at the next position
of the sound source at the same instant as the sound source itself. Such a system
could be viewed as an internal forward model [27] for acoustic tracking.
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