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Abstract. Humans can perform natural and robust walking behavior.
They can even quickly adapt to different situations, like changing their
walking speed to synchronize with the speed of a treadmill. Reproduc-
ing such complex abilities with artificial bipedal systems is still a diffi-
cult problem. To tackle this problem, we present here an adaptive com-
binatorial neural control circuit consisting of reflex-based and central
pattern generator (CPG)-based mechanisms. The reflex-based control
mechanism basically generates energy-efficient bipedal locomotion while
the CPG-based mechanism with synaptic plasticity ensures robustness
against loss of global sensory feedback (e.g., foot contact sensors) as well
as allows for adaptation within a few steps to deal with environmen-
tal changes. We have successfully applied our control approach to the
biomechanical bipedal robot DACBOT. As a result, the robot can ro-
bustly walk with energy efficiency and quickly adapt to different speeds
of a treadmill.

1 Introduction

Human locomotion is a complex process that results from the interaction of
neural control and biomechanics [1],[2]. While biomechanics allows for natural
movements, neural control, on the other hand, plays a role in generating differ-
ent locomotion patterns with energy efficiency as well as assuring that a proper
pattern can be quickly employed to, for instance, adapt to terrain change. This
process is fast and adaptive which leads to the generation of natural robust lo-
comotion and adaptation. During the last few decades, roboticists have tried to
imitate such complex abilities with artificial bipedal systems. Although different
bipedal robot systems have been developed, most of them is based on engineering
control techniques like trajectory-based methods with precise joint-angle control
[3],[4],[5],[6]. This results in non human-like locomotion (i.e., walking with bend-
ing knee) and high energy consumption. Others use biologically-inspired control
mechanisms where global sensory feedback, like foot contact signals, is continu-
ously used for generating coordinated walking behavior [7],[8],[9],[10]. Thus, the
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absence of the feedback can lead to unstable locomotion or failure. If learning
mechanisms for adaptation are applied, then conventional machine learning tech-
niques are normally employed [11],[12],[13],[14],[15]. Such learning techniques are
usually complex and require an off-line learning process.

To tackle this problem, we present here a minimal adaptive combinato-
rial neural control approach coupled with biomechanics of our bipedal robot
DACBOT. This control approach combines two main control modules: Reflex-
based and CPG-based control modules. While the reflex-based control module [9]
generates natural and energy-efficient locomotion, the CPG-based control mod-
ule with synaptic plasticity allows for fast online adaptation to walk on different
treadmill speeds as well as ensures robust locomotion against loss of (global)
sensory feedback (e.g., foot contact sensors).

The paper is organized as follows. First, we describe the adaptive combina-
torial neural control approach. Second, we present a setup of the biomechanical
bipedal robot DACBOT. Third, we illustrate the performance of the control
approach focusing on robust and adaptive walking on a treadmill at different
speeds. Finally, we provide conclusion and discuss future work.

2 Adaptive Combinatorial Neural Control

The adaptive combinatorial neural control (Fig. 1) with a modular architecture
consists of two main neural modules: CPG-based and reflex-based neural control
modules (see subsections below for the details of each module). The idea behind
this control approach is to first use the reflex-based control module to find and
generate a proper walking frequency of a bipedal robot with respect to its prop-
erty and the environment. Simultaneously, the CPG-based control module with
synaptic plasticity learns the generated walking frequency and can later control
the robot for robust walking behavior even without sensory feedback.

According to this concept, at the beginning the reflex-based control gener-
ates locomotion based on joint angle and foot contact sensory feedback for the
biomechanical bipedal robot DACBOT. While the robot is walking, the CPG-
based control uses only hip angle feedback to adapt its internal frequency to
match the walking frequency generated by the reflex-based control. When the
reflex-based control is disconnected (manually or due to sensory failure), the
CPG-based control can still drive the robot. As long as the hip angle feedback is
applied to the CPG-based control, the control can adapt its internal frequency
to walking behavior with respect to the environment. If the feedback is removed
from the CPG-based control, the robot will still be able to stably walk with the
adapted walking frequency.

2.1 Reflex-based Neural Control

The reflex-based neural control, developed in our previous study [9] for biped
locomotion, is a sensor-driven neural network with a hierarchical design. It is
simulated as mono-synaptic connections containing motor neurons for hip and
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Fig. 1. The adaptive combinatorial neural control uses reflex-based neural control
and CPG-based neural control with synaptic plasticity to generate energy-efficient,
robust, and adaptive locomotion of a biped robot, like DACBOT. The reflex-based
control generates the motor outputs (Mreflex[LH,RH,LK,RK]) by using all sensory in-
formation: Left/right hip angle feedback (θLH,RH), left/right knee angle feedback
(θLK,RK), and left/right foot contact feedback (LF,RF ). When the reflex-based con-
trol drives the robot system, the CPG-based control uses only hip angle feedback
(e.g., the left hip (θLH)) to adapt its internal frequency to generate the motor out-
puts (MCPG[LH,RH,LK,RK]). A CPG processing unit is used to shape the CPG motor
outputs by using threshold functions to obtain proper patterns for locomotion control.
The shaped patterns follow the ones generated by the reflex-based control. An enable
unit selects (manually or due to sensors failure) either the reflex motor outputs or the
CPG motor outputs and transmits the selected motor outputs (M[LH,RH,LK,RK]) to
finally control the robot. Note that raw sensory signals are firstly preprocessed at a
signal processing unit and then transmitted to the reflex-based and CPG-based control
units. We use a low pass filter to remove sensory noise at the processing unit.

knee joints (Mreflex[LH,RH,LK,RK], see Fig.2(a)). The motor neurons are linear
and can send their signals unaltered to the motors of a biped robot. Furthermore,
there are several local non-spiking sensory neurons (rate coded neurons), which
by their conjoint reflex-like actions trigger the walking pattern. These local sensor
neurons are for joint control, intrajoint control and leg control. Joint control
arises from sensors at each joint (ES,FS), which measure the joint angle and
influence only their corresponding motor neurons. Intra-joint control is achieved
from sensors, which measure the anterior extreme angle (AL,AR) at the hip
and trigger an extensor reflex at the corresponding knee. Leg control comes from
ground foot contact sensors (GL,GR), which influence the motor neurons of all
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joints. In general, the reflexive locomotion generation works as follows: When
one foot touches the ground, the hip extensor and knee flexor of the other leg
(swing leg) are triggered, as well as the hip flexor and knee extensor of the stance
leg. When the hip stretch receptor of the swing leg is activated, the extensor of
the knee joint in this leg is triggered. Finally the foot of the swing leg touches
the ground and the swing leg and the stance leg swap their roles thereafter. The
generated motor patterns of the controller can be seen at Fig. 2(b).
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Fig. 2. (a) The reflex-based neural control coupled with biomechanics for generating
energy-efficient locomotion of the bipedal robot DACBOT. AL(AR) refers to stretch
receptor for anterior extreme angle of left (right) hip. GL(GR) refers to ground con-
tact sensor neuron of left (right) foot. EI(FI) refers to extensor (flexor) reflex inter-
neuron. EM(FM) refers to extensor (flexor) motor neuron and ES(FS) is extensor
(flexor) sensor neuron. (b) Energy-efficient walking of DACBOT. The motor outputs
(Mreflex[LH,RH,LK,RK]) are directly sent to the robot through amplifiers. Gray areas
indicate when all four motor outputs (corresponding to motor voltage) remain zero
during part of every step cycle; i.e., DACBOT walks passively.

Further details of the controller are not subject of this study, but can be
found in [9]. Although the reflex-based neural control coupled with biomechanics
of DACBOT can generate energy-efficient locomotion (see Fig.2(b)), it fails if
sensory feedback is not provided. Thus, here we apply the CPG-based neural
control (Fig. 3) to overcome this problem. For energy-efficient locomotion in our
study here, we implies that the robot does not require energy all the time during
walking; i.e., it has partly passive locomotion (here, approx. 32% of one gait
cycle, see gray areas in Fig.2(b)) where all actuators are not actively actuated
(receiving zero voltage).
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2.2 CPG-based Neural Control

The CPG-based neural control (Fig. 3(a)), developed in our previous study [16],
consists of three rate codded neurons with a hyperbolic tangent (tanh) transfer
function. The two neurons (H0,1) are fully connected with the four synapses
(ω00, ω01, ω10, ω11). This forms an oscillator if the synaptic weights are chosen
according to an SO(2)-matrix [17]:

W =

(
w00 w01

w10 w11

)
= α ·

(
cos(ϕ) sin(ϕ)
−sin(ϕ) cos(ϕ)

)
. (1)

With −π < ϕ < π and α > 1, the oscillator generates sine-shaped peri-
odic outputs (o0,1) of the neurons (H0,1) where ϕ defines a frequency of the
signals. The third neuron (H2) receives sensory feedback (FCPG) through the
plastic synapse (ω2F ) and connects to the oscillator through the other plastic
synapses (ω02, ω20). For convenience, we use here the left hip angle signal (θLH)
of DACBOT as the feedback. These plastic synapses are governed by Hebbian-
type learning rules based on correlation and relaxation terms driving the weights
towards given relaxation values (ω2Frelax

, ω02relax
, ω20relax

). The parameters A,
B > 0 determine the influence of the individual terms [16]:

ω2F (t+ 1) = ω2F (t) +A · FCPG(t) · o2(t) −B · (ω2F (t) − ω2Frelax
), (2)

ω02(t+ 1) = ω02(t) −A · o0(t) · o2(t) −B · (ω02(t) − ω02relax
), (3)

ω20(t+ 1) = ω20(t) −A · o2(t) · o0(t) −B · (ω20(t) − ω20relax
). (4)

The parameter (ϕ, Eq. 1) is adapted based on the following frequency adap-
tation rule:

ϕ(t+ 1) = ϕ(t) + µ · ω02(t) · o2(t) · ω01(t) · o1(t), (5)

where µ is a learning rate, o1 and o2 are the outputs of the neurons (H1,2),
and ω01 and ω02 are synaptic weights (Fig. 3(a)). With an appropriate choice of
the control parameters [16], the CPG-based control governed by above equations
is able to adapt to sensory feedback (FCPG) within a wide frequency range. As
soon as the controller has adapted to the external frequency of the sensory feed-
back (FCPG), the average correlation of o2 (sensory feedback) and o1 (controller
output) is equal to zero. After adaptation, the sensory feedback can be removed
from the controller while it maintains to oscillate at the adapted frequency.

Here, the output (o1) of the CPG neuron (H1) is used for controlling the hip
and knee joints of DACBOT since after the adaptation process the output will
be in phase with the reflex motor command. This will lead to smooth switch-
ing between the reflex-based and CPG-based control; thereby the dynamical
stability of the system is still maintained. The final CPG output (o1) is post-
processed at a CPG processing unit to obtain the hip and knee motor patterns
(MCPG[LH,RH,LK,RK], e.g., red line in Fig. 3(b)) that have exactly the same
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Fig. 3. (a) The CPG-based neural control with synaptic plasticity. The neurons (H0,1,2)
are connected through synaptic plasticity (ω00,01,10,11,20,02) to generate a periodic pat-
tern with its internal frequency. The internal frequency can be entrained by an external
feedback through the synaptic weight (ω2F ). By using the Hebbian-type learning rules
(Eqs. 2, 3, and 4) and the frequency adaptation rule (Eq. 5) for synaptic plasticity, the
CPG-based neural control can be entrained to quickly adapt its output frequency to
the external frequency of sensory feedback and can memorize the adapted frequency
although the feedback has been removed. (b) CPG and hip motor signals before, dur-
ing, and after adaptation. The CPG-based control can quickly change its frequency
within about 3-4 walking cycles. (c) Time series of the internal frequency changes dur-
ing walking for different initial frequencies (ω0). It finally converts to a proper walking
frequency of DACBOT which is originally generated by the reflex-based control.

motor patterns (Mreflex[LH,RH,LK,RK], see Fig. 2(b)) of the reflex-based con-
trol. The CPG-based control can quick adapt to the proper walking frequency
of DACBOT and is not sensitive to an initial internal frequency (Fig. 3(c)).
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3 Setup of the Biomechanical Bipedal robot DACBOT

DACBOT (Dynamic, Adaptive, Compliant walking robot) is a biomechanical
bipedal robot which has been developed based on RunBot [9]. It is a 600g robot,
26 cm tall from foot to hip. Since the robot is designed for two-dimensional
motion, a rod is used to constrain its movement and prevent lateral displace-
ment; therefore, the robot can only rotate along the y-axis (Fig. 4(a)). DACBOT
consists of two legs, where each leg is actuated by hip and knee joints. With a
special design based on a human leg, each leg of DACBOT consists of a com-
pliant ankle connected to a flat foot. It is mainly employed to realize dynamic
and robust self-stabilization in a passive compliant manner. In addition, each
foot has one switch sensor for ground detection as a binary feedback. The left
and right hips are actuated by HS-624MG servomotors while the left and right
knees are actuated by HS-85BB+ micro servomotors. The built-in controller of
each servomotor was removed in order to directly control its DC motor and be
able to read the angle feedback via its internal potentiometer sensor.

Motors Sensors

MLK MRK

MLH,RH

θLKθRK

θLH,RH

RF LF

    Linux PC
  (Controller)

    Arduino board

Motor drivers

Sensors Motors

(b)(a) (c)

x

z
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θy

Fig. 4. (a) The planar bipedal robot DACBOT. For our experiments here, we constrain
the robot such that it can only rotate along the y-axis. (b) Motors and sensors of
DACBOT. (c) Schematic of the DACBOT setup.

The motor commands (MLH,LK,RH,RK , Fig. 4(b)), generated by the adap-
tive combinatorial controller, are sent to the DACBOT motors through an
Arduino UNO board and the Groove I2C Motor drivers. The sensory signals
(θLH,LK,RH,RK ,LF ,LH, Fig. 4(b)) are also digitized using this board for the
purpose of feeding them into the controller. The schematic of the DACBOT
setup can be seen at Fig. 4(c). A treadmill used to carry out our robot walking
experiments has been modified so that its speed can be controlled through a
computer.
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4 Experiments and Results

Several experiments were carried out to show the performance of the adaptive
combinatorial neural control. For the first experiment, we let DACBOT walk
with the reflex-based control while the CPG-based control was disabled (Fig. 5).
During walking, we then disabled a foot sensor at around 300 time steps. Since
the CPG-based control was not activated, DACBOT failed to walk without foot
contact feedback. In general, the reflex-based control can generate proper walking
behavior when all sensory feedback (θLH,RH,LK,RK , LF , RF ) are provided, while
it fails if any sensory feedback (e.g., foot sensor signal) is missing.
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Fig. 5. DACBOT locomotion driven by only the reflex-based control of the adaptive
combinatorial neural control. At the first period, all sensors were provided to the sys-
tem. Therefore, the controller generated stable locomotion. Once a foot sensor has been
disabled at around 300 time steps, the controller cannot generate proper motor signals.
The top panel shows the left foot sensor signal. The middle panel shows a motor signal
of the reflex-based control. The bottom panel shows the final motor signal controlling
the left hip of DACBOT from the adaptive combinatorial control. In this case, since
only the reflex-based control is used to drive the system, the combinatorial control has
the same output as the reflex-based control. We encourage readers to watch the video
clip of this experiment at http://manoonpong.com/SAB2016/M1.mp4.
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For the second experiment, we let DACBOT walk with a combination of
the reflex-based and CPG-based control (Fig. 6) where the reflex-based control
drove DACBOT first and then the CPG-based control took over as soon as
its frequency adapted to the walking frequency generated by the reflex-based
control. Afterwards, we disabled a foot sensor at around 1000 time steps. Since
DACBOT was driven by the CPG-based control after the frequency adaptation,
it can still stably walk without foot contact feedback.
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Fig. 6. Robust locomotion of DACBOT driven by the adaptive combinatorial control.
Initially, the system was driven by the reflex-based control and simultaneously the
CPG-based control adapted its internal frequency using the frequency adaptation mech-
anism with hip angle feedback to synchronize with the generated walking frequency.
At around 1000 time steps, a foot sensor was disabled but DACBOT still performed
robust locomotion driven by the CPG-based control. We encourage readers to watch
the video clip of this experiment at http://manoonpong.com/SAB2016/M2.mp4.

The last experiment shows adaptive locomotion of DACBOT on different
speeds of the treadmill. DACBOT was driven by the combinatorial control. The
same procedure as the second experiment was performed with an extension of
changing the speed of the treadmill after DACBOT was controlled by the CPG-
based control where foot contact feedback was also disabled. We increased the
speed of the treadmill from 0.09 m/s to 0.15 m/s and finally to 0.23 m/s. Figure 7
shows frequency adaptation and a hip motor signal with respect to the different
situations. It can be seen that the controller can quickly react and adapt its
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output frequency to generate proper locomotion behavior. Recall that we used
only a hip angle signal for the frequency adaptation process.
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Fig. 7. Adaptation to three different speeds of the treadmill. Here DACBOT was con-
trolled by the combinatorial control where the reflex-based control drove the system
first and then the CPG-based control took over. Walking frequency was adapted ac-
cording to the speed of the treadmill. The online frequency adaptation is obtained
from the adaptation process of the CPG-based control with hip angle feedback. The
top panel shows the internal frequency of the CPG-based control adapting to the
different speeds of the treadmill. The middle panel shows a motor signal of the CPG-
based control. The bottom panel shows the final motor signal controlling the left hip of
DACBOT from the adaptive combinatorial control. This adaptation leads to different
walking behaviors; i.e., DACBOT performed about six walking cycles within 300 time
steps at 0.09 m/s, about seven walking cycles within 300 time steps at 0.15 m/s, and
about eight walking cycles within 300 time steps at 0.23 m/s. Note that due to the
robot dynamics, the CPG frequency can slightly increase and decrease although the
treadmill is constant. We encourage readers to watch the video clip of this experiment
at http://manoonpong.com/SAB2016/M3.mp4.
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5 Conclusion and Future work

This paper presents the development of adaptive combinatorial neural control
for a biped robot, like DACBOT. It combines reflex-based and CPG-based con-
trol mechanisms. Based on our control strategy, the reflex-based control firstly
drives the robot system by exploiting sensory feedback and biomechanics of the
robot to obtain proper walking frequency and leg coordination which results
in energy-efficient locomotion. In parallel, the CPG-based control adapts its in-
ternal frequency to the actual walking frequency. Once the internal frequency
of the CPG-based control has matched to the actual walking frequency or the
CPG output has become in phase with the reflex output, the CPG-based con-
trol can be switched to control the system. Due to synaptic plasticity and a fre-
quency adaptation mechanism embedded in the CPG-based control, DACBOT
can quickly adapt its walking frequency to a change of the speed of a treadmill.
For the adaptation, only a hip angle signal is required as sensory feedback to
the CPG-based control while other sensory signals (e.g., knee and foot sensor
signals) can be removed (as shown in the last experiment). This way, DACBOT
performs adaptive locomotion with minimal feedback requirement. Furthermore,
DACBOT can still perform robust locomotion at a certain walking speed even
the hip angle signal has been removed from the CPG-based control. Such adap-
tive and robust locomotion cannot be achieved by purely reflex-based control [9]
while proper initial walking frequency and leg coordination cannot be achieved
by purely CPG-based control.

Some works combined CPG-based control with adaptive mechanisms (like,
reinforcement learning [13] and evolutionary algorithms [14],[15]) for robust loco-
motion. However, such adaptive mechanisms need long learning time. In contrast,
our control strategy with synaptic plasticity and the frequency adaptation mech-
anism can generate robust locomotion and online adaptation within a few steps
to deal with environmental changes. Thus, this study shows that this novel and
simple combinatorial control approach -presented here for the first time- may be
a way forward to solve coordination problems and to achieve fast online adapta-
tion with minimal feedback in other complex motor tasks for active prosthetic
and orthotic devices. In the next step, we will implement a 2DOF upper body
component on DACBOT and develop adaptive body control to allow DACBOT
to walk with minimal movement constraints and to deal with large disturbance.
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