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Abstract. The aim of this paper is to present an artificial neural net-
work (ANN) based adaptive nonlinear control approach of a robot arm,
with highlight on its capability as a compliant control scheme. The ap-
proach is based on a computed torque law and consists of two main
components: a feedforward controller (approximated by the ANN) and a
proportional-derivative (PD) feedback loop. Here, the feedforward con-
troller is used to approximate the nonlinear system dynamics and can
also adapt to the long-term dynamics of the arm while the PD feedback
loop can be tuned to obtain proper compliant behaviour to deal with in-
stantaneous disturbances (e.g., collisions). The employed controller struc-
ture makes it possible to decouple these two components for individual
parameter adjustments. The performance of the control approach is eval-
uated and demonstrated in physical simulation which shows promising
results.
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1 Introduction

Although robot arms have been developed in the past decades, there are still
several concerns about their development. In many cases linear control strategies
are sufficient by suppressing the nonlinear characteristics of the robot arm sys-
tem, or using gain scheduled techniques [21]. However, in some cases nonlinear
behaviour due to dry friction and backlash can be observed. Therefore, further
investigation has to be made in order to achieve a high performance control sys-
tem that can compensate the nonlinearity [4, 6]. Control techniques to deal with
nonlinear systems usually require precise knowledge of the system (e.g. dynamic
inversion). Thus, they are difficult to implement in many cases.
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From this point of view, model-free control techniques can be used to provide
a solution for the system where the equations governing the system are unknown
[17]. Artificial neural networks (ANNs) are universal approximators [2], i.e., they
are able to approximate any unknown function after a sufficient learning phase.
This makes them a good solution for model-free control of nonlinear systems [3,
9, 12, 13, 17].

In addition to the nonlinear control aspect, safety is a key concern for robot
arms, since they might have to interact with humans. In order to avoid injuries
and achieve safe human-robot interaction different approaches have been devel-
oped, such as variable stiffness actuators [18, 14], which requires special hardware
development, or safe planning [16], which requires complete perception of the en-
vironment. Other approaches include collision detection and reaction [10, 1] that
can deal with more dynamic collisions but can complicate the control system
design process.

Compared to all these approaches, we present here an alternative control
technique that combines the adaptive nature of ANN based control and the vir-
tual compliance control provided by an additional proportional-derivative (PD)
control law. This control technique, inspired by [8, 15], can decouple between
short-term (collisions) and long-term (changes in the environment and the sys-
tem) disturbance compensation.

This provides a simple and intuitive controller design without any hardware
modification for a robot arm. Additionally, in this study, we aim to also investi-
gate whether the tracking error of the arm can be kept low via the ANN based
control and proper compliant tuning such that the arm can react to collisions
with flexibility.

The article is organized as follows. First we describe the robot arm model used
in this study. Second, we present the artificial neural network based compliant
control approach together with its subcomponents for generating movement and
compliant behaviour of the arm. Third, we illustrate the performance of the
controller as an adaptive compliant control solution, followed by conclusion.

2 Robot arm model

The dynamics of an n-link rigid robotic manipulator can be expressed in the
Lagrange form as:

M(q)q̈ + C(q, q̇)q̇ + G(q) + F(q̇) + τ d = τ (t), (1)

where q(t) ∈ Rn the joint variable vector, M(q) the inertia matrix, C(q, q̇) the
Coriolis and centripetal matrix, G(q) the gravity vector, and F(q̇) the friction.
Bounded unknown disturbances (including modeling errors) are denoted by τ d,
and the applied torque is τ (t) [7]. The structure of the 2DOF robot arm used
in this study is shown in Fig. 1a and its physically 3D model simulated in the
realistic robot simulator LpzRobots [11] is shown in Fig. 1b.

The computed torque control law can cancel all nonlinearity of the system
by adding a linear error correction term to the feedforward part, which can be
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Fig. 1: (a) 2-link planar robot arm. (b) The simulated robot arm using the
LPZRobots simulation environment [11].

described as:

τ (t) = M(q)q̈ + C(q, q̇)q̇ + G(q) + F(q̇)︸ ︷︷ ︸
feedforward

−M(q)(Kvė + Kpe)︸ ︷︷ ︸
feedback

, (2)

where e = qd−q (subtracting desired joint position vector from the actual one),
and Kv, Kp are constant gain matrices.

With this strategy, the computed torque consists of two components, which
are feedforward and feedback. This separability makes it possible to generate
compliant behaviour, and still keep the tracking error low. The feedforward part,
acting as trajectory control, takes care of the desired movement generation of
the system (i.e., carrying an object along a path) while the feedback part with
its gains (Kv, Kp) allows for compliance and flexibility of the robot joints when
instantaneous disturbances (such as collisions) occur.

3 Artificial neural network based compliant control

Based on (2), the control of the 2-link robot arm (Fig. 1) consists of two parts,
where an ANN can approximate the feedforward component (Fig. 2).

Function representation: A multilayer ANN is proven to be able to approx-
imate any function with finitely many discontinuities to arbitrary precision [5].
This makes it an excellent tool for nonlinear control systems [8], i.e. a properly
trained network can represent any function, so:

f(x) = WTF(VTx) + ε(x), (3)
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Fig. 2: The ANN’s and the control system’s structure. (a) A 3 layer ANN with
x as input (e.g. [qd, q]) and y as output (f , the torques required), which is
described by (3), (b) The whole system with the control and tuning signals.

where f(x) is an unknown function, and ε(x) is the reconstruction error. It is
proven in [2] that there exists ideal weights W and V with finite number of
neurons such that the reconstruction error is 0 (ε = 0). In practice it is sufficient
if ‖ε‖ < εn, i.e., the function approximation is good enough for the application.

The choice of activation function can change the approximation capabilities
of the network significantly [5]. Even though it is possible in theory to reconstruct
an arbitrary function, a prior knowledge of the system can reduce the adaptation
time and increase the overall performance.

Since the system in question is mechanical, it can be mostly approximated
with smooth functions but there are also nonlinear friction effects (static friction)
which can be approximated by piecewise continuous functions. Taking this into
account an augmented network structure was considered as it is suggested in
[15], which consist of a hidden layer with 2 different neurons, with F1 and F2

activation functions (smooth and nonsmooth, respectively).
The network’s output is then:

f(x) = ŴT
1 F1(V̂T

1 x) + ŴT
2 F2(V̂T

2 x) + ε(x), (4)

where the weights W1, V1 connect the neurons with smooth, and the weights
W2, V2 connect the neurons with the nonsmooth activation function to the
input and output layers.

Here, a sigmoid transfer function is used as our smooth activation function
while a nonsmooth activation function for friction compensation can be modelled
as [15]:

F2(x) =

{
0 if x ≤ 0

1− exp(−x) if x > 0
(5)

The computed torque law as shown in (2) combined with (4) becomes:

τ (t) = ŴT
1 F1(V̂T

1 x) + ŴT
2 F2(V̂T

2 x)︸ ︷︷ ︸
feedforward

+ Kvr︸︷︷︸
feedback

+ Kz(‖Ẑ‖+ ZM )r︸ ︷︷ ︸
robustifying term

, (6)
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where the signals:

e = qd − q tracking error,

r = ė + Λe filtered tracking error,

x =
[
eT ėTqT

d q̇T
d q̈T

d

]T
ANN input vector,

and Ẑ is a block diagonal matrix containing V̂ and Ŵ.
The robustifying term is added to guarantee stability with higher weights,

proposed by [8], and the design parameters Λ, Kv, Kz are symmetric, positive
definite gain matrices, and ZM is a bound on the unknown target weight norms.

Weight tuning: We use a standard error backpropagation learning algorithm
with an additional so-called forgetting term to train the network. The forgetting
term is used to introduce saturation of the weights, which guarantees bounded
weights, i.e. stable behaviour [9]. The weights are adjusted during the learning
process, which is described by the differential equations:

˙̂
W1 = F

[(
F̂1 − F̂ ′

1V̂1x
)

rT − κ‖r‖Ŵ1

]
, (7a)

˙̂
W2 = G

[
F̂2r

T − κ‖r‖Ŵ2

]
, (7b)

˙̂
V1 = H

[
x
(
F̂ ′T

1 Ŵ1r
)T
− κ‖r‖V̂1

]
, (7c)

˙̂
V2 = 0. (7d)

F, G, and H are the learning rates, and F̂ ≡ F(V̂Tx) and in case of sigmoid ac-
tivation function, the derivative is F̂ ′ ≡ F̂(1− F̂). Choosing higher rates makes
the leaning process faster, but increasing them too much can produce oscillatory
and unstable behaviour. V̂2 is here kept constant.

Note that this learning rule is described in continuous time, but in a discrete
time controller the forward Euler method is sufficient with small enough dt, so
the weights are updated at each time step as:

Ŵ1,k+1 = Ŵ1,k + dt
˙̂

W1,k , (8a)

Ŵ2,k+1 = Ŵ2,k + dt
˙̂

W2,k , (8b)

V̂1,k+1 = V̂1,k + dt
˙̂
V1,k . (8c)

Compliant control: As mentioned above, the feedforward part is responsible
for providing the necessary input to the system based on the modelled dynamics,
and on top of that the feedback part (PD loop) eliminates the unmodelled or
instantaneous disturbances, which are not present in the system long enough for
the adaptation, so the behaviour can be described by:

f(q, q̇) + τ d = f̂ + τPD, (9)
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where f describes the dynamics of the system, as it is described by (1), f̂ is the
approximation of this by the ANN, and τPD is the PD compensation. If it is
assumed that f ≈ f̂ , then the disturbance is eliminated by the feedback control.
The PD law is described as:

τPD = Kpe + Kdė. (10)

This law results in a virtual spring-damper system, with e = 0 equilibrium point.
Choosing higher or lower Kp and Kd can make the system’s response stiffer or
softer.

This can be analogously applied with the control law described by (6) for
robot arm control. It is important to note that the robustifying term, which has
the same effect as the PD part, needs to be taken into account when choosing
Kv and Λ. It will make the arm stiffer with the increasing weight norms, so
the compliant performance requirements can be violated in the initial learning
phase and in extreme approximation errors (i.e., when the network is not trained
properly).

4 Simulation results

The control algorithm was tested in simulations. The performance was compared
to a conventional PID controller.

Here, the parameters of our developed controller, described by (6) and (7)
were set to: Kv = 1, Λ = 5, Kz = 20, Zm = 1, κ = 0.0001, F = 100, G =

100, H = 100. The network’s input was the vector x =
[
eT ėTqT

d q̇T
d q̈T

d

]T
and

the output was the approximated torques τ required to follow the desired tra-
jectories. Therefore, the number of input, output, and hidden neurons was set
to 10, 2, and 16, respectively.

Figure 3 shows the performance of the PID and the ANN controller for a
sinusoidal reference signal. The PD gains for the developed algorithm is kept
low so the response mainly represents the ANN’s performance. The learning
curve is shown in Fig. 4. It can be seen that the network successfully learned
after t=0.5s where the weights converge.

Figure 5 shows the response to disturbances, an instantaneous push force at
t=2.5s, and a change of the weight of the carried mass at t=5.0s. The learning
curve shown in Fig. 6, which shows that the weights are not changed significantly
at t=2.5s, so the disturbance is compensated by the PD loop, however at t=5.0s
the ANN learns the new dynamics of the system eliminating the tracking error,
that the PID controller cannot do with low feedback gains.

Changing the learning rates (F, G, H) can increase the speed of learning,
but it also means that the network reacts to collisions which is undesirable (and
can also lead to oscillatory response), so the rates were empirically set to the
values described above to achieve the desired performance.

The arm in motion can be seen at youtu.be/ZHHx3eUzBc4.
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Fig. 3: The system’s performance for sinusoidal reference signal, showing the
joint positions and velocities, and the tracking errors. (a) PID with Kp = 100,
Kd = 30,Ki = 20. (b) ANN withKv=1, L=5,Kz=20, Zm=1, κ=0.0001, F=100,
G=100, H=100.
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Fig. 4: ANN learning curve and actuator torques with Kv=1, L=5, Kz=20,
Zm=1, κ=0.0001, F=100, G=100, H=100, without disturbances.



Artificial neural network based compliant control for robot arms 9

(a)
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Fig. 5: The system’s performance for sinusoidal reference signal with disturbances
at t = 2.5s and t = 5s (dotted lines), showing the joint positions and velocities,
and the tracking errors. (a) PID with Kp = 300, Kd = 90, Ki = 60. (b) ANN
with Kv=1, L=5, Kz=20, Zm=1, κ=0.0001, F=100, G=100, H=100.
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Fig. 6: ANN learning curve and actuator torques with Kv=1, L=5, Kz=20,
Zm=1, κ=0.0001, F=100, G=100, H=100, with disturbances at t = 2.5s and
t = 5s (dotted lines).
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5 Conclusions

In this work we developed an ANN based adaptive compliant control algorithm
and investigated its performance. The main benefit of using this algorithm is
the simple and intuitive way of decoupling the adaptive ANN based control and
compliant behaviour making the controller design more intuitive. The algorithm
was successfully applied to a simulated 2DOF robot arm for robust, adaptive,
compliant behaviour generation of the arm.

A similar approach is described by [20, 19], using a modular neural network
together with a virtual agonist-antagonist muscle mechanism to generate energy-
efficient walking pattern on different surfaces. That solution requires force sen-
sors at the end-effectors (i.e., the tip of the legs) to achieve the compliant be-
haviour; while, in our solution and implementation, extra force sensors are not
required. We only use joint position feedback embedded in the motors. Further-
more, our control approach is torque control which is different from the position
control approach of [20, 19]. In principle, torque control allows for better com-
pliant adaptation and regulation (e.g., when the robot is in contact with objects
or receives disturbances) compared to position control; thereby, our developed
approach here is suitable for robot arm control and object manipulation.

In the future work, we will implement the controller on a real robot arm and
test its performance to evaluate in pick and place tasks involving disturbances.
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