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Abstract. Reactive spatial robot navigation in goal-directed tasks such
as phonotaxis requires generating consistent and stable trajectories to-
wards an acoustic target while avoiding obstacles. High-level goal-directed
steering behaviour can steer a robot towards the target by mapping
sound direction information to appropriate wheel velocities. However,
low-level obstacle avoidance behaviour based on distance sensors may
significantly alter wheel velocities and temporarily direct the robot away
from the sound source, creating conflict between the two behaviours. How
can such a conflict in reactive controllers be resolved in a manner that
generates consistent and stable robot trajectories? We propose a neural
circuit that minimises this conflict by learning sensorimotor mappings as
neuronal transfer functions between the perceived sound direction and
wheel velocities of a simulated non-holonomic mobile robot. These map-
pings constitute the high-level goal-directed steering behaviour. Sound
direction information is obtained from a model of the lizard peripheral
auditory system. The parameters of the transfer functions are learned via
an online unsupervised correlation learning algorithm through interac-
tion with obstacles in the form of low-level obstacle avoidance behaviour
in the environment. The simulated robot is able to navigate towards a
virtual sound source placed 3 m away that continuously emits a tone
of frequency 2.2 kHz, while avoiding randomly placed obstacles in the
environment. We demonstrate through two independent trials in simu-
lation that in both cases the neural circuit learns consistent and stable
trajectories as compared to navigation without learning.

Keywords: behaviour-based robotics, reactive navigation, phonotaxis, lizard
peripheral auditory system, synaptic plasticity, correlation-based learning

1 Introduction

Navigating towards a sound source is relevant is several real-world applications.
For example, mobile robots in the home that autonomously navigate to a human

http://ens-lab.sdu.dk/


speaker in response to voice commands can be useful in the human-robot interac-
tion context. Such robots could also navigate towards people living alone that are
immobilised due to injury sustained by falling down but are able to vocalise—a
common problem among the elderly population. Furthermore, search-and-rescue
robots looking for visually undetectable survivors amongst rubble and large de-
bris in natural disaster scenarios such as earthquakes can use audition as a sensor
modality for navigation in such cluttered environments.

Navigation is one of the earliest problems that has been investigated in the
mobile robotics community. Control architectures (see [17] for a comparative
review) for mobile robot navigation can be broadly classified into three types—
reactive, deliberative and hybrid (a combination of deliberative and reactive).
These architectures differ in the level of sensing, planning and acting performed
[1]. Deliberative and hybrid control architectures can generate optimal robot
trajectories but require precise a priori knowledge of the environment respec-
tively at the global or local level. These approaches also consume significant
computational power to achieve this optimality. Purely reactive controllers on
the other hand are advantageous in that they do not rely on formal path plan-
ning algorithms that necessitate such precise and local/global knowledge of the
environment a priori. Such controllers also tend to employ behaviour-based ar-
chitectures [3] such as the widely known subsumption architecture [6]. The neural
circuit presented here differs from the subsumption architecture in that the low-
level obstacle avoidance behaviour modulates the parameters of the high-level
goal-directed steering behaviour via unsupervised learning. Therefore, no explicit
hand-tuning of the high-level behaviour is necessary. There has also been sig-
nificant research in neurobiologically-inspired map-based navigation for mobile
robots (see [24] for a review on the research in the last decade) where the focus
has been on specialised neurons for spatial awareness and navigation in rodents.

Path-planning and obstacle avoidance are core components in mobile robot
navigation and a number of techniques have been developed. Reviews of various
approaches from different perspectives can be found in [22,13]. Path planning can
be global or local, where the environment is respectively fully or locally known.
Global path planning is usually performed offline due to high computational re-
quirements while local path planning is performed online due to relatively lower
computational requirements. Here we focus on online reactive path planning us-
ing only local information about the distance of the closest approaching obstacle
and the direction of the target.

There are several analytical approaches in the literature on reactive acoustic
navigation for mobile robots with obstacle avoidance [11,4,2,26,27,12], differing
in the number of microphones as well as number and type of distance sensor(s)
used. Our approach focusses on developing a purely reactive control architec-
ture with two sound sensors and one distance sensor. This architecture is in the
form of a neural circuit that implements two behaviours—high-level goal-directed
steering and low-level obstacle avoidance. The neural circuit combines two brain-
inspired mechanisms involved in learning and memory—heterosynaptic plastic-
ity and non-synaptic plasticity. These two mechanisms allows a simulated non-



holonomic mobile robot to learn stable trajectories towards an acoustic target,
placed 3 m away, emitting a continuous tone of 2.2 kHz. The neural circuit is val-
idated in simulation and its performance with and without learning is compared.
Sound direction information is extracted by a previously developed model of the
lizard peripheral auditory system [23]. This model has been extensively studied
via various robotic implementations [21]. Braitenberg sensorimotor mappings [5]
between the extracted sound direction and the robot’s motor velocities are used
to generate the goal-directed steering behaviour (phonotaxis), while the param-
eters of these mappings are modulated via Input Correlation (ICO) learning [19]
during the obstacle avoidance behaviour. Thus, interaction with obstacles is ex-
plicitly exploited to fine-tune parameters of the high-level behaviour and learn
consistent and stable trajectories. ICO learning is unsupervised, closed-loop,
correlation learning adapted from differential Hebbian learning [15,14].

This paper is organised in the following manner. Section 2 describes the lizard
peripheral auditory system model and its response characteristics. Heterosynap-
tic and non-synaptic plasticity are also described here. Section 3 describes the
neural circuit and the experimental setup. Simulation results are presented and
discussed in Sect. 4. Section 5 summarises the research and outlines further work.

2 Background

2.1 Lizard peripheral auditory system

The lizard peripheral auditory system (1A, left) has two eardrums (TM) con-
nected via internal air-filled Eustachian tubes (ET) opening into a central cavity.
Sound passes through the ET, linking the two eardrums acoustically. This acous-
tical coupling maps small phase differences (corresponding to interaural time
differences in the µ-sec scale) between sound waves impressing at either ear into
relatively larger differences of up to 20 dB in sound amplitudes sensed at either
ear. The magnitude of the phase difference and therefore the sensed amplitude
difference corresponds to the relative direction from which sound arrives.

A lumped-parameter electrical model [9] (Fig. 1A, right) of the lizard periph-
eral auditory system mimics its filtering effects. Voltages VI and VC respectively
model sound pressures PI and PC at the ipsilateral (towards the location of the
sound source) and contralateral (away from the location of the sound source)
ears. PI and PC respectively trigger the flow of currents iI and iC, that model
eardrum vibrations, through impedances Zr and Zv. Zr model the total acoustic
filtering due to the stiffness of the ET and the eardrum mass while Zv models
the acoustic filtering effects of the central cavity. The resultant sound pressure
in this cavity as modelled by voltage Vcc, due to the superposition of internal
sound pressures experienced from either end triggers the flow of current icc. This
current models the sound wave propagation inside the central cavity due to vari-
ations in the sound pressure inside it. This model generates as outputs |iI| and
|iC| (Fig. 1B), which respectively are the sensed ipsilateral and contralateral am-
plitudes at the corresponding ear. Sound direction information is encoded into
these quantities as described earlier and formulated as
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Fig. 1. Sound direction information driving phonotaxis behaviour. A Cross-section
[7] (left) of a lizard (genus Sceloporus) peripheral auditory system and its electrical
equivalent [9] (right). B The outputs |iI| (left) and |iC| (right) as given by (1).

|iI| = |GI · VI +GC · VC| ≡ 20 log |iI|dB and

|iC| = |GC · VI +GI · VC| ≡ 20 log |iC|dB. (1)

GI and GC respectively are sound frequency-specific (1-2.2 kHz) ipsilateral
and contralateral gains. These terms are experimentally derived via laser vibrom-
etry [7] measurements of ear vibrations and are implemented as 4th-order digital
infinite impulse response bandpass filters. The symmetry of the model implies
that its outputs |iI| and |iC| are identical for a sound signal arriving directly from
the front or the back in the azimuth plane, i.e. there is front-back ambiguity.
Furthermore, when |iI| > |iC| the sound signal coming from the ipsilateral side
and when |iC| > |iI| it is coming from the contralateral side. |iI| and |iC| vary
symmetrically but non-linearly with the sound direction, respectively reaching
maxima and minima towards the extremes of the relevant range of [−90◦,+90◦].

2.2 Plasticity and learning in the biological brain

Biological neurons are interconnected via synapses, that act as a bridge be-
tween two individual neurons (see Fig. 2A1). Electrical signals are propagated
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between a pre-synaptic neuron and a post-synaptic neuron via biochemical pro-
cesses occurring in these synapses. Changes in the properties of these synapses
influence (but not exclusively) whether the post-synaptic neuron will fire or not
in response to synaptic input from a pre-synaptic neuron. This phenomenon of
activity-induced changes in the synapses is referred to as synaptic plasticity [20].
These changes can make the synapse relatively weaker or stronger, respectively
decreasing or increasing the efficacy of the synaptic connection between the pre-
synaptic and post-synaptic neuron. Synaptic plasticity is believed to be the core
biochemical process underlying learning and memory.
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Fig. 2. Neuroplasticity and learning. A Illustration showing heterosynaptic and non-
synaptic plasticity sites in the brain. B Hypothetical neural circuit before and after
Input Correlation learning. During learning, temporally correlated activities of sensory
neurons A and B leads to gradual increase in strength of synapse (depicted as a thick
line) between A and motor neuron C. This leads to stronger activation of neuron C,
causing correspondingly stronger behavioural response. After learning the behavioural
response is strong enough to avoid activation of neuron B.

Change in the synaptic strength between two neurons is typically dependent
on the activity of the pre-synaptic neuron. However the activity of a third neuron
can releases chemical neuromodulators that induce changes in synaptic strength
between two other neurons as well, a phenomenon referred to as heterosynaptic
plasticity. The intrinsic excitability, i.e. sensitivity to synaptic input, of neurons
can also be altered. This is manifested as changes in the firing characteristics of
the neuron itself. Such non-synaptic plasticity has been observed across many
species and brain areas [25]. Non-synaptic plasticity is different from synaptic
plasticity in that here the neuron’s properties are altered, while in the latter the
properties of synapses coupling two neurons together are altered. This form of
plasticity is not well understood and has been suggested as a regulation mecha-
nism to maintain a neuron’s average firing rate at a target level.

Multimodal sensory stimuli while interaction with the environment modify
the structure of the brain and change the stimulus-action relationship. These
stimuli strengthen or weaken synapses between neurons and allow an organism
to learn new associations between sensory inputs of different modalities in an
unsupervised manner. Hebbian learning [10] is considered to be one form of
such unsupervised associative learning, and is theorised to be the underlying



mechanism for synaptic plasticity in the brain. One form of Hebbian-like learn-
ing is ICO learning [19], which is an online unsupervised differential Hebbian
learning algorithm that implements heterosynaptic plasticity. Here, change in
synaptic strength between a pre-synaptic neuron and a post-synaptic neuron
is driven by the temporally correlated activity of all neurons projecting on to
the post-synaptic neuron (see Fig. 2B). The post-synaptic neuron’s output is a
linear combination of all inputs, and indirectly influences the activity of both
the input neurons via a defined behavioural response. ICO learning produces
a behavioural response that nullifies the activation of the input neuron whose
response temporally lags that of the other input neuron. ICO learning is fast,
stable and can successfully generate adaptive behaviour in real robots [18,16].

3 Materials and methods

The simulated mobile robot is modelled as a differential drive robot with two
wheels (see Fig. 3), which imposes non-holonomic kinematic constraints. The
distance l between the centres of the two wheels is defined to be 16 cm. The robot
has two virtual acoustic sensors that functionally mimic microphones and receive
auditory signals from the acoustic target towards which the robot must navigate.
The separation d between these sensors is 13 mm because the parameters of the
lizard peripheral auditory model have been derived from an animal with a 13 mm
separation between its ear. The acoustic sensor separation must match that
value, otherwise the actual ITD cue and the ITD cues to which the peripheral
auditory model is tuned will be unmatched. These auditory signals are processed
by the lizard peripheral auditory model and its outputs are fed as inputs to
the neural circuit described next. Phonotaxis is performed exclusively via these
auditory signals. The robot also has a distance sensor located at its centre that
provides as outputs the distance of obstacles from the robot, within a 180◦ field-
of-view in front of the robot, and its relative location. This sensor functionally
mimics a laser range finder, a common distance sensor used in mobile robots
for navigation purposes. White Gaussian noise at 20 dB and 3 dB is respectively
added to the auditory inputs and to the distance sensor input to simulate noisy
sensors. The forward kinematic model for differential drive mobile robots [8] as
given by (2) is used to determine the pose [x, y, θ] of the robot, where (x, y) are
the two-dimensional coordinates and θ is the heading.

xy
θ

 =

cos(ωδt) −sin(ωδt) 0
sin(ωδt) cos(ωδt) 0

0 0 1
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Fig. 3. Mobile robot kinematics.

Figure 4 depicts the neural circuit for reactive navigation with obstacle avoid-
ance. The Braitenberg sensorimotor cross-couplings implement a mapping be-
tween the auditory inputs (sound direction information in decibels coming from
the lizard peripheral auditory system) and the motor outputs (linear wheel ve-
locities in cm/s). The sensorimotor couplings are defined such that the ipsilateral
auditory input proportionally drives the contralateral motor output. The robot
respectively turns either left or right, based on whether the left auditory signal
is greater than the right auditory signal (|iI| > |iC|) or vice versa (|iC| > |iI|).
The radius of the turn is proportional to the relative magnitudes of the auditory
signals. When the robot is directly facing the target, the two acoustic sensors
are equidistant from the target. In this condition there is no phase difference
between the auditory signals arriving at the two acoustic sensors and thus the
peripheral auditory model’s outputs are identical. Therefore the wheel velocities
are also identical, resulting in the robot moving in a straight line. These sen-
sorimotor cross-couplings, implemented as micro-circuits with two sensorimotor
neurons having non-linear sigmoid transfer functions, generate phonotaxis be-
haviour. The two transfer functions are respectively defined as

vl =
4

1 + βre−|iC|
andvr =

4

1 + βle−|iI|
(3)

where the parameters βl and βr determine the amount of respective horizontal
shifts. The transfer functions have finite limits between 0 cm/s to 4 cm/s. The
strengths of these couplings are determined by the intrinsic excitability of the
individual sensorimotor neurons, which is modelled as the horizontal shift in the
transfer functions. The two identical micro-circuits that implement ICO learning
modify βl and βr and shift these transfer functions during learning.

The micro-circuits implementing obstacle avoidance behaviour respectively
inhibit and excite the ipsilateral and contralateral outputs of the sensorimotor
neurons. If the closest approaching obstacle is detected to be within the collision
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Fig. 4. The neural circuit for reactive navigation with obstacle avoidance embodied in
the environment. The sensorimotor mappings between the auditory inputs |iI| and |iC|
and the motor outputs vl and vr (dotted blue lines) implement phonotaxis behaviour.
The micro-circuits implementing ICO learning (solid lines inside the shaded areas)
modify the strengths, modelled by βl and βr, of these mappings. The obstacle avoidance
behaviour is implemented by the sensorimotor mappings, with fixed strengths, between
the distance sensor inputs and motor outputs (dashed red lines).

threshold, a obstacle avoidance reflex is triggered that makes the robot turn
sharply away from the obstacle. This reflex is implemented by enhancing the
motor velocity output to the wheel on the same side as the obstacle to a relatively
high but fixed value of 4 cm/s while the motor velocity output to the opposite
wheel is suppressed to a relatively low but fixed value of 0.1 cm/s. This causes the
robot to sharply turn left when it detects an obstacle to its right and vice versa.
The collision threshold (see Fig. 3) is the perimeter of radius 20 cm, centred on
the robot. The navigation goal is to move towards an acoustic target located
3 m away from the initial position of the robot, while avoiding any obstacles in
the environment. Since the strength of the Braitenberg couplings determines the



straightness of the robot’s trajectories, the ICO learning algorithm must learn
the best possible coupling that generates as straight trajectories as possible.

The initial pose of the robot is set to [0, 0, 0◦]. A random number of circular
obstacles are randomly distributed in the environment between the robot and the
target as well as around the target. The size of the obstacles are randomly chosen
but are below a threshold equal to the wavelength of the sinusoidal acoustic
signal of frequency 2.2 kHz emitted by the target. This threshold is calculated as
speed of sound in air in cm/s

sound frequency in Hz
=

34000

2200
= 15.45 cm. Wheel slip is not modelled

to maintain relative simplicity.
The learning is performed for a maximum of 50 iterations to keep simula-

tion time reasonable. The learning is stopped either when the robot reaches the
acoustic target without triggering the obstacle avoidance behaviour or when all
50 iterations are complete. Each iteration runs for a maximum of 1000 time steps.
At each simulation time step of 1 s, the sound direction information is extracted
and wheel velocities are computed via the sigmoid transfer functions. Then the
new pose of the robot based on current wheel velocities is determined by (2).
If the robot encounters an obstacle within its collision threshold, the obstacle
avoidance reflex overrides the calculated wheel velocities as described earlier.
The obstacle avoidance reflex lasts as long as the obstacle remains inside the
collision threshold. At each time step during the obstacle avoidance maneuver,
ICO learning respectively updates the parameters βl and βr using the tempo-
ral correlation between the ipsilateral and contralateral auditory signal and the
distance sensor signal. βl and βr are initialised to random values between 0 and
1, while synaptic weights wl and wr are initialised to random values between 0
and 0.1. The learning rate η is set to 0.01. βl and βr are updated as

δβl
δt

= wl |iI|+ dL ,where
δwl

δt
= η |iI|

δdL

δt
, and

δβr
δt

= wr |iC|+ dR ,where
δwr

δt
= η |iC|

δdR

δt
.

(4)

Since (4) is simply positive feedback, allowing the ICO learning algorithm to
run without restraint will cause βl and βr to increase uncontrollably. This will
continuously push the transfer function curves to the right such that the both
vl and vr, and thus the robot’s linear velocity, will eventually become infinitesi-
mally small. To counter this, βl and βr are exponentially decreased as function
of time during learning. This is done by multiplying βl and βr with an time
varying scaling factor defined as e(−t/k), where t is the current time step and
k is chosen via trial-and-error to be 60000. This negative feedback prevents the
uncontrollable shift in the transfer functions and maintains homeostasis.

4 Results and discussion

Figure 5 depicts the performance of the neural circuit in two independent tri-
als. When the learning is not used, the neural circuit produces more winding
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Fig. 5. Acoustic navigation with the proposed neural circuit. A and B The transfer
functions of the left SN (red) and right SN (blue) before learning (dotted) and after
learning (solid). C and D Robot trajectories without learning (dotted), during learning
(solid blue) and after learning (solid green).

trajectories as compared to when using learning. In this case the robot always
attempts to move in a straight line towards the target due to the strong and
constant Braitenberg sensorimotor couplings between the auditory inputs and
the motor outputs. This straight trajectory is heavily modified by the obstacle
avoidance behaviour such that robot makes sharp turns while avoiding obstacles
and reorienting towards the target. When learning is enabled, the neural circuit
learns relatively smoother trajectories. The robot is able to either completely
suppress its obstacle avoidance behaviour (Fig. 5, A and C) or minimise it to a
relatively large extent (Fig. 5, B and D). This is due to the modification of the
strengths of the sensorimotor couplings by the ICO learning algorithm during
interaction with the obstacles. The neural circuit tries to learn the best possi-
ble sensorimotor couplings that minimise sharp turns during movement. Early
in the learning process the robot generates very winding trajectories, since the
Braitenberg sensorimotor couplings are initially relatively weak. This enforces
circular trajectories with the turning radius being dependent on the strength of
the couplings. As the learning progresses, the sensorimotor couplings adapt to
the environment and the robot moves in progressively straighter trajectories.



5 Conclusions and future directions

We have presented a neural circuit for reactive acoustic navigation with obsta-
cle avoidance. The circuit uses simple Braitenberg acoustomotor couplings to
realise goal-directed navigation behaviour towards an acoustic target located
3 m away, emitting a continuous 2.2 kHz tone. The strength of these couplings
are learned through interaction with obstacles in the environment, realised as
obstacle avoidance behaviour. The circuit learns stable and consistent trajecto-
ries using only noisy sensor information about sound direction, extracted via a
model of the lizard peripheral auditory system, and distance from closest ob-
stacle. In this manner the low-level obstacle avoidance behaviour modifies the
high-level goal-directed steering behaviour to resolve the conflicting trajectories
that these behaviours enforce. The circuit allowed a simulated mobile robot to
follow relatively smooth trajectories during phonotaxis while avoiding obsta-
cles. In comparison, trajectories generated without learning were relatively less
smooth. The immediate next steps are to validate the neural circuit in real robot
trials.

The trajectories generated by the proposed neural circuit are sub-optimal and
characteristic of reactive navigation. Strong Braitenberg couplings tend to en-
force straight-line trajectories that are difficult to maintain in cluttered environ-
ments. Smoother trajectories may be obtained by correcting them pre-emptively
to circumvent the obstacle avoidance behaviour. ICO learning can be used to
modify the sensorimotor couplings for obstacle avoidance behaviour so that the
robot turns progressively earlier in time in response to approaching obstacles.
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