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Abstract— Crossmodal sensory integration is a fundamen-
tal feature of the brain that aids in forming an coherent
and unified representation of observed events in the world.
Spatiotemporally correlated sensory stimuli brought about
by rich sensorimotor experiences drive the development of
crossmodal integration, with neuroplasticity as its underlying
mechanism. Bayesian causal inference framework dictates a
weighted combination of stimulus estimates to achieve opti-
mal crossmodal integration, but assumes knowledge of the
underlying stimulus noise distributions. We present a Hebbian-
like correlation learning-based model that continuously adapts
crossmodal combinations in response to dynamic changes in
noisy sensory stimuli but does not require a priori knowledge of
sensory noise. The model correlates sensory cues within a single
modality as well as across modalities to independently update
modality-specific neural weights. This model is instantiated as a
neural circuit that continuously learns the best possible weights
required for a weighted combination of noisy low-level auditory
and visual spatial target direction cues. The combined sensory
information is directly mapped to wheel velocities that orient
a non-holonomic robotic agent towards a moving audio-visual
target. Simulation results demonstrate that unimodal learning
enhances crossmodal learning and improves both the overall
accuracy and precision of multisensory orientation response.

I. INTRODUCTION

We constantly perceive and localise moving objects in our
environment using crossmodal cues. Vision and audition are
the primary modalities involved in spatial localisation tasks.
The integration of auditory and visual cues forms a unified
percept of the motion of an audio-visual target. It has been
shown that visual spatial acuity is biased towards the frontal
space than at the periphery, while auditory spatial acuity
is biased towards the periphery than in the frontal space
[4]. This implies that during bimodal localisation auditory
and visual biases either dominate the other or are combined
together via a neural weighting scheme. Indeed, fMRI studies
suggest that both visual and auditory neural substrates share
resources [5]. In the superior colliculus, a central region
for multisensory integration in the midbrain, visual and
auditory afferent signals converge on to many multisensory
neurons [6]. When two different sensory stimuli are present
at close spatial proximity, the neuron exhibits crossmodal
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enhancement—the neuron’s response is significantly greater
than that evoked by the most effective of the two unimodal
inputs individually [7]. Enhanced orientation behaviour, char-
acterised by reduced reaction time and an increase in prob-
ability of correct orientation to a visual target by a spatially
coincident auditory stimulus, has been reported in the context
of responses of multisensory SC neurons [8], [9]. Audio-
visual multisensory integration has been investigated within
the Bayesian framework [10]. We have previously reported
on audio-visual guidance of orientation behaviour in robotic
localisation of a static target [11].

Bayesian models (for a review see [12]) at the single-
neuron as well as population level are used to model mul-
tisensory integration and predict optimal cue combination
at the behavioural level but do not shed light on the un-
derlying mechanisms. These models typically assume that
neuronal responses encode likelihood functions with multi-
variate Gaussian or Poisson distributions. Predictions made
by Bayesian models corroborate results of psychophysical
bimodal localisation experiments that demonstrate domina-
tion of the more reliable cue over the other [12]. In most of
these models the neural weight assigned to each modality is
typically assumed to be fixed.Neurophysiological evidence
indicates that multisensory neuron responses demonstrate
reliability-based cue weighting [13], [14], i.e. the weights
increase or decrease with relative cue reliability. This implies
that learning is a core process in multisensory integration.

Whether learning in multisensory integration is unimodal,
crossmodal or both is not well known, but intuition suggests
it should be a combination of both. Given that sensory cue
reliabilities can independently change over time, crossmodal-
only learning, where one unimodal cue modifies the neural
weight of another unimodal cue, may cause incorrect weight
updates. This is relevant in audio-visual tracking tasks. If
at a given instant in time an auditory cue that is relatively
less reliable in the frontal space causes the neural weight for
the visual cue to be updated, the visual estimate of spatial
location in the frontal space may be reduced, leading to a rel-
atively worse multisensory estimate of spatial location after
weighted cue combination. Therefore, one can assume that
the cue having greater reliability should influence the neural
weight of the cue having relatively smaller reliability and
not the other way round. This however does not necessarily
guarantee optimal or near-optimal cue integration. Unimodal
learning for a given modality may also simultaneously influ-
ence the associated neural weight independently to generate
near-optimal predictions of sensory cues of that modality.
This may further improve multisensory responses.
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Fig. 1. Auditory and visual directional cues. A. Cross-section (top) of the Sceloporus lizard peripheral auditory system (borrowed from [1]). Sound waves
of wavelengths 340-85 mm (corresponding to frequencies of 1-4kHz) diffract around the animal’s head due to its small size (I3 mm) and arrive at the ears
(TM) with a tiny phase difference (corresponding to a u-sec interaural time difference or ITD). Air-filled Eustachian tubes (ET) connecting the two ears
allow sound to travel between the ears. These sound direction-dependent phase differences (proportional to time differences) are translated into relatively
larger sound direction-dependent differences in perceived sound amplitude at either ear. Electrical (bottom) model of the peripheral auditory system (based
on [2] and redrawn from [3]). Voltages V1 and V¢ respectively model sound pressures at the ipsilateral (closer to the sound source) and contralateral (further
away from the sound source) ears. Impedances Z; and Z, together model the total acoustic filtering due to the eardrums, ET and the mouth cavity. The
resultant sound pressure in this cavity due to interaction of sound waves from either side is modelled by voltage V... Current i, models sound wave
propagation inside the mouth cavity. Currents i1 and ic model the overall eardrum vibrations and represent sound direction information. B. Target auditory
direction cue represented as a binaural subtraction of currents i1 and ic given by (1). C. Encoding of target direction cue in the visual field. The visual

direction cue varies between -1 when the target is located at the extreme right and +1 when it is located at the extreme left.

We test the hypothesis that unimodal learning enhances
crossmodal learning and improves both the accuracy and
precision of multisensory responses. We present a simple
neural circuit for audio-visual cue integration that directly
computes the orientation response, as the weighted sum of
auditory and visual directional cues, of a non-holonomic
mobile robot that is tasked with dynamically tracking a
moving audio-visual target. Three independent Hebbian-like
correlation-based learning mechanisms, the first two being
unimodal while the third being crossmodal, concurrently
update the cue weights. We compare tracking performance
in five independent trials.

II. MATERIALS AND METHODS

The auditory directional cue is extracted by the lizard
peripheral auditory system (Fig. 1A). Sound direction infor-
mation (Fig. 1B) extracted by the peripheral auditory model
is formulated as

D
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G and Gc respectively are sound frequency-specific (1-
2.2kHz) ipsilateral and contralateral gains. These are exper-
imentally determined by laser vibrometry [1] measurements
of eardrum vibrations. The gain terms are implemented as
4th-order digital bandpass filters with infinite impulse re-
sponse. The peripheral auditory system, its equivalent model
and response characteristics has been reported earlier [15] in
detail and summarised here for the sake of clarity.

The visual directional cue is modelled as the location of
the target inside the visual field (Fig.1C), which is 4m

deep with a 57° horizontal angle, chosen to be the same
as a Microsoft Kinect V1 camera sensor. The visual signal
xy is zero when the target is outside the field-of-view, and
geometrically calculated to lie within the range [—1,+1]
when the target is inside the field-of-view.

The audio-visual tracking task is defined as follows. A
simulated robotic agent with rotational freedom but not
translational freedom must track a simulated, moving audio-
visual target by rotating on-the-spot (Fig.2C). The target
moves in a straight line from the right side of the robot to
the left with a randomly varying linear velocity between 0-10
m/time step for a random number of time steps between 5-
10. This simulates intermittent movements prevalent in real
world scenarios. The target emits a 2.2kHz sinusoidal tone
with white Gaussian noise with a signal-to-noise ratio of
20dB added to it to simulate a noisy cue with relatively
low reliability. The emission is intermittent with a random
duty cycle, i.e. the emission is on for a random number of
simulation time steps between 10-15 and off for a random
number of simulation time steps between 5-10. This sim-
ulates real-world situations where auditory events are non-
continuous, exhibit greater noise and therefore relatively low
reliability. The visual signal however is continuous and clean,
simulating a cue with a relatively high reliability.

The robotic agent is modelled as a non-holonomic dif-
ferential drive robot with two wheels (Fig. 2A). The wheels
are separated by a distance / = 16 cm. The robot has two
simulated acoustic sensors that functionally mimic micro-
phones to capture the auditory signal emitted by the target.
The sensors are separated by 13 mm because the peripheral
auditory model parameters have been derived for a 13 mm ear
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Fig. 2. Experimental setup. A. Non-holonomic robot kinematics. B. The neural circuit embodied as a robotic agent. C. Experimental arena.

separation. The sensor separation must match this to maintain
a match between the ITD cues to which the peripheral
auditory model is tuned and the actual ITD cues. The lizard
peripheral auditory model extracts the auditory direction
cue x, = ‘l'éj from the auditory signal. A virtual visual
sensor located at the robot’s centre, functionally mimicking a
Microsoft Kinect V1 camera, extracts the visual direction cue
xy as described earlier. x, and x; are fed to the neural circuit
(Fig. 2B). The forward kinematic model for differential drive
mobile robots [16] as given by (2) is used to determine
the pose [x,y,0] of the robot, where (x,y) are the two-
dimensional coordinates and 0 is the orientation.

X cos(wdt) —sin(wdt) 0O Dsin(0)
y| = | sin(wdt) cos(wdt) 0| | —Dcos(0)
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At each simulation time step #, a single multisensory
neuron computes the common motor velocity |v| = |vj| =

[ve| of robot as the weighted sum of auditory and visual
directional cues x, and x, respectively. The signs for v; and
vy are pre-assigned according the direction in which the robot
must turn. Thus multisensory integration is modelled as v =
wy Xy (1) +wa Xa (7). When the visual cue is absent (xy(¢) = 0),
i.e. when the target is outside the visual field the auditory
cue weight w, is independently updated via the unimodal
learning rule dw, = Ux,(t) 5)‘5“;’ . When the auditory cue is
absent (x,(r) = 0), i.e. when the target is not emitting the
tone the visual cue weight w, is independently updated via
another unimodal learning rule owy = ,uxv(t)%. When
both auditory and visual direction cues are present, which
only occurs when the target is within the visual field and
is emitting the tone, the auditory cue weight is indepen-

dently updated by a third crossmodal learning rule dw, =
Wx, (1) Bxgt(t). Thus the weight associated with the relatively
less reliable auditory cue is also updated according to the
correlation between the auditory cue and the relatively more
reliable visual cue. Since these three learning mechanisms
are independent of each other, the auditory cue weight w, is
simultaneously updated via both unimodal and crossmodal
learning, while the visual cue weight w, is updated only
via unimodal learning because it is assumed to be a clean
signal with relatively greater reliability. As discussed earlier,
updating the weight of a high reliability cue via a relatively
low reliability cue may cause the cue integration result to
be degraded. Five independent trials are performed, each
with the learning rate u set to 0.5 and initial values of the
weights randomly chosen as w, = 0.01 and w, = 0.07. In all
trials the robot is initially pointing straight ahead. Tracking
performance is quantified as the relative deviation of the
robot’s orientation from the target’s angular position.

III. RESULTS AND DISCUSSION

For crossmodal-only learning (Fig. 3), the orientation error
drops relatively slowly, leftmost graphs) since the visual
and auditory cue weights are not updated as long as the
target is outside the visual field. When both unimodal and
crossmodal learning are allowed (Fig. 3), rightmost graphs),
the error drops relatively faster due to unimodal learning
outside the visual field. When the target is inside the visual
field (Fig. 3, shaded regions), the overall orientation error is
visibly greater for crossmodal-only learning as compared to
when both unimodal and crossmodal learning are allowed.
Both absolute mean and standard deviation values (Fig.4),
calculated over the time period in which audio-visual cue
integration occurs (Fig.3, shaded regions), are relatively
lower when both unimodal and crossmodal learning occur
concurrently as compared to when crossmodal-only learning
occurs. This is in agreement with our hypothesis that uni-
modal learning enhances crossmodal learning and improves
both the accuracy and precision of multisensory responses.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

We presented a neural circuit for multisensory integra-
tion that combines unimodal and crossmodal learning. We
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Fig. 3. Orientation error over time. Trials are ordered from top to bottom.
For each trial, the left panel corresponds to crossmodal-only learning, while
the right panel corresponds to combined unimodal and crossmodal learning.
The shaded regions indicate concurrent unimodal and crossmodal learning.
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demonstrated in a simulated audio-visual tracking task that
unimodal learning enhances crossmodal learning and im-
proves both the accuracy and precision of orientation re-
sponses of a robotic agent. However, neurophysiological ev-
idence for such interplay between unimodal and crossmodal
learning is lacking and must be investigated. Furthermore,
detailed analysis of the model’s behaviour along with greater
number of trials is necessary.
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