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Abstract. Drones are used in an increasing number of applications in-
cluding inspection, environment mapping, and search and rescue oper-
ations. During these missions, they might face complex environments
with many obstacles, sharp corners, and deadlocks. Thus, an obstacle
avoidance strategy that allows them to successfully navigate in such en-
vironments is needed. Different obstacle avoidance techniques have been
developed. Most of them require complex sensors (like vision or a sensor
array) and high computational power. In this study, we propose an alter-
native approach that uses two simple ultrasonic-based distance sensors
and neural control with synaptic plasticity for adaptive obstacle avoid-
ance. The neural control is based on a two-neuron recurrent network.
Synaptic plasticity of the network is done by an online correlation-based
learning rule with synaptic scaling. By doing so, we can effectively exploit
changing neural dynamics in the network to generate different turning
angles with short-term memory for a drone. As a result, the drone can
fly around and adapt its turning angle for avoiding obstacles in different
environments with a varying density of obstacles, narrow corners, and
deadlocks. Consequently, it can successfully explore and navigate in the
environments without collision. The neural controller was developed and
evaluated using a physical simulation environment.

1 Introduction

The use of drones in various applications (including inspection, environment
mapping, and search and rescue operations) has expanded in recent years [1,2,3].
The applications often take place outside in open areas away from obstacles and
people, but as the technology advances the opportunity for flight in more complex
areas arises. These are environments such as indoor or urban areas with many
obstacles, sharp corners, and deadlocks. However, it does require the drone to
feature a collision avoidance strategy to enable safe flight. Often this strategy
is achieved by using cameras and computer vision with algorithms (like, SURF
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or classifiers) to detect frontal objects and estimate a distance to them during
flying [4,5]. The knowledge is then used to avoid obstacles before colliding them
by moving to either side of the object. These vision-based algorithms sometimes
cannot handle corner cases or scenarios where it is not a single enclosed entity in
the way. To overcome this problem, other methods try to map the environment
using algorithms (such as SLAM) and afterwards use the information for path
planning to avoid obstacles [6]. This may require high computational power
which can be difficult to implement on drones, especially when they are small in
size. In this study, we propose an alternative approach inspired by [8] where they
use simple two sensors and neural control with synaptic plasticity for adaptive
obstacle avoidance of walking robots. Here we apply it to controlling autonomous
drones. The neural control is based on a two-neuron recurrent network. Synaptic
plasticity of the network is done by an online correlation-based learning rule with
synaptic scaling. This neural-based control technique is a simple but effective way
to enable a drone to navigate in complex environments with obstacles, narrow
corners, and deadlocks. Due to low computational resource requirements for
the neural algorithm implementation, this can open up for small indoor drone
applications to fly in the environment with varying obstacle densities.

2 Materials and Methods

In this study, adaptive obstacle avoidance of an autonomous drone is achieved via
a sensorimotor loop which involves neural dynamics, synaptic plasticity, sensory
feedback, and a physical drone body (Fig. 1). Neural dynamics and plasticity are
embedded in a neural control network (Fig. 2). Sensory feedback from the left and
right obstacle detection sensors of the drone is processed through the network.
The network outputs are used for pitch and yaw control of the drone. This results
in an autonomous drone system that can navigate in a complex environment
without collision. The drone is simulated in a V-REP and the communication
between the simulated drone and the neural control network is based on the
Robot Operating System (ROS) .

2.1 System Overview

The drone system is based on two main entities (see Fig. 1). It consists of a
V-REP [7] simulation and a ROS-based neural control system.

Here we use a yaw rate and attitude roll and pitch parameters as control
inputs to the drone. A positive value of the yaw rate will drive the drone to
turn clockwise around its own axis. A negative value will make it turn counter
clockwise. Two ultrasonic-based distance sensors are implemented at the front
part of the drone for obstacle detection. Each sensor has a beam angle of 10 deg
and a range of 0.5 m. The sensors are rotated 35 deg and positioned 5 cm with
no pitch from the forward pointing axis of the drone. Height control is not the
main focus here; therefore, the height setpoint is kept fixed at a certain height
in all experiments. The neural controller is based on ROS and written in C++.
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The ROS interface from the simulation enables the controller to get sensory
information and send motor commands to the drone simulation. The controller
implements the neural control network and synaptic plasticity described in the
following sections.

Fig. 1. System overview of adaptive embodied neural closed-loop control for au-
tonomous obstacle avoidance and navigation behaviours of a drone.

2.2 Neural Control for Obstacle Avoidance of Autonomous Drones

The neural control for obstacle avoidance of an autonomous drone is derived
from a neural network shown in Fig. 2. The basic principle of this neural con-
trol approach is inspired by Braitenberg vehicle [9]. Here it is adapted to gain
additional dynamics for a drone platform rather than a two wheeled robot. All
neurons of the network are modeled as discrete-time non-spiking neurons. The
activity ai of each neuron develops according to:

ai(t) =

n∑
j=1

Wijoj(t− 1) +Bi, i = 1, ..., n (1)

where n denotes the number of units, Bi an internal bias term or a sensory
input to neuron i, Wij the synaptic strength of the connection from neuron j to
neuron i. The output oi of all neurons of the network is calculated by using a
hyperbolic tangent (tanh) transfer function, i.e., oi = tanh(ai),∈ [−1, 1], except
for the two neurons (N6 and N7, see Fig. 2) using a sigmoid transfer function.

The core of the network consists of the two recurrent input neurons (N1 and
N2, see Fig. 2). They each receive obstacle detection signals from two ultrasonic-
based distance sensors, installed at the front part of the drone. The range of each
sensor is adjusted to 50 cm. Before feeding the raw sensory signals to the network,
we map them to the range of [-1, 1] where -1 means no obstacle in the range
and 1 means that an obstacle is near (about 20 cm distance). The output signals
(O1,2 ∈ [− 1, 1]) of the two neurons are transmitted to the output neuron (N3).
The output of N3 is then mapped to a yaw command which is finally sent to the
drone.
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Fig. 2. The neural control network for obstacle avoidance of drones. (a) The two re-
current input neurons with plasticity synapses. (b) The drone specific network used
for yaw and pitch control. (c) An example of input-output relation of a recurrent neu-
ron (i.e., N1) of the network. The neuron shows different hysteresis loops at different
self-connection weights.

According to this setup, the yaw command will be a positive value if the drone
detects an obstacle on the left and a negative value if it detects an obstacle on
the right.

The self-connections (W11, W22) can lead to a hysteresis effect in their neu-
ral activations. The hysteresis assures that the drone can perform a continuous
turning behavior although the sensors do not detect an obstacle anymore. Note,
the strength of the self-connections (> 1.0) defines the hysteresis width which
determines the turning angle in front of the obstacles for avoiding them, i.e., the
larger the hysteresis interval, the larger the turning angle. Additionally this hys-
teresis effect can reduce the amount of a wall following behavior that a network
without the self-connections or Braitenberg vehicle-based control will generate.

Besides the self-connections, the neurons are mutually connected by two in-
hibitory synapses (W12, W21). This forms a so-called even loop [10]. In an even
loop, in general, only one neuron at a time is able to produce a positive output,
while the other one has a negative output, and vice versa. This guarantees the
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optimal functionality for avoiding obstacles and escaping from getting stuck in
corner cases. In other words, in a corner the neural system can remember the
first obstacle for a certain duration and executes the corresponding behavior
(turn) and, in addition, it does not trigger the behavior induced by the second
obstacle which would be a turning in the opposite direction.

However, since this network only affects yaw, the drone will always continue
to move forward depending on the pitch setpoint given. In case there is not
enough space to perform a forward-moving turn for avoiding an obstacle, the
drone might collide the obstacle. To overcome the problem, the second control
network (N4-N7) was developed (Fig. 2). It is applied for pitch control and works
by first changing the activation range of the two input neurons from [-1, 1] to
[0, 1] using simple neurons with a sigmoid transfer function. Next, it finds the
average by having synapses with weights of 0.5 from each sigmoid neuron (N6,
N7) to a hidden neuron (N4). The output of N4 represents the distance and
presence of nearby objects with a range of [0, 1]. A bias term with inhibitory
synapse is introduced to the final output neuron (N5), with the purpose of driving
the output towards negative values when no objects are detected. Finally the
resulting output from neuron N5 is used as a scaling of the pitch setpoint. This
leads to reduction of forward motion when objects become closer and at a certain
point also backward motion when objects are very close to the drone.

The ranges for yaw and pitch setpoints are arbitrary in the simulation and do
not represent ordinary units such as m/s or similar, and thus the final yaw and
pitch outputs need to be mapped appropriately. The weights of the recurrent and
inhibitory synapses between the two input neurons, are responsible for the adap-
tive obstacle avoidance behavior of the drone. In this study, the self-connections
are initially set to a positive value (e.g., 0.5) and the mutual connections be-
tween N1 and N2 are initially set to a negative value (e.g., -0.5). To obtain
proper connection weights for avoiding obstacles, corners, and deadlocks in dif-
ferent environments, we apply synaptic plasticity mechanisms described in the
following section. The other weights of the network are statically set as depicted
in Fig. 2.

2.3 Synaptic Plasticity for Adaptive Obstacle Avoidance

To achieve adaptive obstacle avoidance of an autonomous drone (i.e., online
adaption of its turning angle for avoiding obstacles in different environments
with a varying density of objects, narrow corners, and deadlocks), we use here
correlation-based learning [11] to modify the four synaptic weights (W11,22 and
W12,21) of the two-neuron recurrent network, part of the neural control network
(see Fig. 2). This learning rule is based on three factors: The output activity
Oi(t) (i ∈ 1, 2) of the neurons (N1,2) at the time step t, the output activity
Oi(t − 1) of the neurons (N1,2) at the previous time step (t-1), and a reflex
signal Ri(t) computed from the sensory input Ii as described in equation 2.

Ri(t) =

{
1, if Ii(t) > −0.5,

0, if Ii(t) ≤ −0.5.
(2)
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The reflex signal is used to control the learning process which will be ac-
tivated as soon as the drone detects an obstacle at close range (about 0.3 m).
Additionally, we also employ synaptic scaling [12] to avoid instability of the
synaptic weights. To assure that the synaptic weights do not change their sign
in order to maintain the hysteresis effects, for the learning rule, we map the
outputs Oi ∈ [−1, 1] to the positive interval vi ∈ [0, 1] as shown in equation 3.

vi =
Oi + 1

2
. (3)

The self-connections (W11,22) are governed by Equations (2,3), respectively.

W11(t+ 1) = W11(t) + µr · v1(t− 1) · v1(t) ·R1(t) + γ(k − v1(t)) ·W11(t)2, (4)

W22(t+ 1) = W22(t) + µr · v2(t− 1) · v2(t) ·R2(t) + γ(k − v2(t)) ·W22(t)2. (5)

µr is the learning rate that changes the time scale of the learning process.
It is here set to 0.01. γ is the forgetting rate that similarly changes the time
scale of forgetting/synaptic scaling. It is set 0.0003. k is the offset that enables a
constant reduction of the weights when no obstacle is detected. It is set to -0.01.

The two inhibitory connections (W12,21) are modified in a similar fashion, but
are changed equally to maintain symmetry; thereby forming the even loop [10].
This is done by introducing temporary variables (q1,2) that calculate from them
the average inhibitory connections. These parameters are updated as follows:

q1(t+ 1) = µq · v1(t− 1) · v1(t) ·R1(t) + γ(k − v1(t)) · q1(t)2, (6)

q2(t+ 1) = µq · v2(t− 1) · v2(t) ·R2(t) + γ(k − v2(t)) · q2(t)2, (7)

W12,21(t+ 1) = W12,21(t) + 1/2 · (q1(t+ 1) + q2(t+ 1)). (8)

µq is the learning rate and set to 0.015. γ and k are the forgetting rate and
the offset and they are set to the values described above. Note that all meta
parameters (i.e., the learning and forgetting rates and the offset) are empirically
selected.

In principle, this learning mechanism changes the synaptic weights of the
two-neuron recurrent network in a way that the sensory inputs and the weights
will drive the neural output to reach and stay at the upper fixed point (≈+1)
of the hysteresis loop (see Fig. 2c) while the drone is trying to escape from a
corner or a deadlock. As a consequence, the drone will escape from the situation
by performing a very large turning angle. Once it has escaped or does not detect
an obstacle any more, the second part of the mechanism (synaptic scaling) will
reduce the synaptic weights such that the neural output returns to the lower
fixed point (≈-1) of the hysteresis loop (see Fig. 2c); thereby the drone will
stop turning and continue to fly forward. In other words, the interaction of



7

correlation-based learning and scaling moves the neural system between two fixed
point states (i.e., hysteresis effects). Note that the used learning mechanism is
independent of the initial weight values [12].

3 Experiments and Results

The neural controller described in this study was tested in different environ-
ments with and without the use of synaptic plasticity. Three environments with
a varying density of objects (see Fig. 3) were created. The first and second envi-
ronments (Figs. 3a and 3b) have sparse and dense random obstacles, respectively,
while the third one has obstacles that were placed to form corners and deadlocks
(Fig. 3c).

Fig. 3. Simulated environments. (a) Low density of obstacles. (b) High density obsta-
cles. (c) High density of obstacles with corners and deadlocks.

The tests were conducted by setting a constant forward motion with a small
random noise to the yaw control to enable an exploration behavior. Each test
was run for approximately 30 minutes. Otherwise it was manually stopped if the
drone got stuck. Figure 4 shows the simulation results of the drone using synaptic
plasticity in the three environments. We initially set the synaptic weights of the
recurrent network to W11,22 = 0.5 and W12,21 = -0.5 and changed them through
the online learning rule described above. It can be seen that the drone could fly
in all environments without getting stuck.

Figure 5 shows synaptic weight changes during the experiments. It can be
seen that, in the environment with low dense obstacles (Fig. 4a), the weights
changed slowly. This is because the drone did not frequently detect obstacles
during the flight (Fig. 5a). In contrast, the weights increased quite fast (Fig. 5b)
in the environment with high dense obstacles (Fig. 4b) and very fast (Fig. 5c) in
the environment with high dense obstacles, corners, and deadlocks (Fig. 4c). In
all cases, if no input was present, the synaptic weights started to decay slowly
due to synaptic scaling which prevents the divergence of the weights. Table 1
shows three sets of average weights obtained from Fig. 5. These weights were
used as the fixed weights (W11,22,12,21) of the recurrent network to test the drone
without online adaption.
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Fig. 4. (a),(b),(c) The trajectories of the drone in the three different environments or
maps. Notice that no matter the density of objects, the drone is capable of moving
around in all areas of the maps.

Fig. 5. The progress of weights during tests using synaptic plasticity. The weights
change differently depending on the environment. (a) In the sparse environment, the
weights changes slowly, up until a point (around 1200 time steps) where the drone
enters one of the few narrow corner cases. (b),(c) When the density is increased, the
weights start to change more rapidly.
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Table 1. Weight averages

Environment W11,22 W21,12

Low density of obstacles 3.1707 -3.9627

High density of obstacles 3.3689 -4.2286

High density of obstacles corners and deadlocks 3.6105 -4.5302

Figure 6 shows the simulation results of the drone with the three sets of the
fixed average weights (Table 1) without online adaption in the corresponding
environments. In the environments with high dense obstacles, corners, or/and
deadlocks, the drone could not fully explore the areas. It basically got stuck in a
corner (Fig. 6b) or a deadlock (Fig. 6c). Only in the environment with low dense
obstacles, the drone can fly without getting stuck (Fig. 6a).

Fig. 6. (a),(b),(c) The trajectories of the drone without online adaptation in the three
different environments. Notice that in the environment with low density of obstacles
(a), the drone is capable of getting to most areas and avoids most obstacles. In the
environment with high density obstacles (b), it ends up at a corner and cannot get
away. In the environment with high density of obstacles, corners, and deadlocks (c), it
almost immediately hits a corner where it gets stuck.

A quantitative test was made to further verify the improvements of the synap-
tic plasticity. The test was conducted by simulating each environment, with and
without the synaptic plasticity. A run was deemed successful when the drone
was able to fly for 5 minutes without either getting stuck or crashing. A total of
5 runs was done for each test and the results are showed in table 2.

The results of the experiments show that synaptic plasticity adds adaptation
to a simple recurrent network, and thus enables the drone to fully explore in the
environments with a varying density of obstacles, narrow corners, and deadlocks.
It also allows the drone to autonomously avoid obstacles and escape from a corner
and a deadlock. This effect can be compared when plasticity (see Figs. 4b, 4c)
and non-plasticity (see Figs. 6b, 6c) are used. When observing the weights during
flying in the sparse obstacle environment (Fig. 5a), there are small incremental
changes for a long period. This is expected to happen when the drone reaches
corners or obstacles where it only needs a larger turning angle to avoid getting
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Table 2. Results of quantitative tests run on each environment. The runs are deemed
successful if the drone is able to fly for 5 minutes without crashing or getting stuck.

Environment Low density High density
High density,
sharp corners and deadlocks

Ratio of succesfull runs
with synaptic plasticity

5/5 4/5 4/5

Ratio of succesfull runs
without synaptic plasticity

5/5 3/5 0/5

stuck. However, at around the 1200 time steps (Fig. 5a) there is a large spike
in the weight values indicating that it has reached a case where a large turning
angle is required to escape from the situation. Without this adaptation, a large
turning angle would be required at all times even though it is unnecessary and
excessive in most cases. The results indicates that this method could very well
be used for collision avoidance.

4 Discussion

Obstacle avoidance is an important basic function for autonomous navigation
of drones. According to this, different obstacle avoidance techniques have been
developed [4,5,6,16,17]. Many of them use visual cameras to extract information
regarding obstacles. The information is used to find a suitable path to fly around
the obstacles. Another way is to use Braitenberg’s approach [9] which reactively
controls an agent based on the activations of sensory inputs. For this approach,
the agent will turn as long as it detects an obstacle. At a corner or deadlock, it
might switch between turning left and right several times or it sometimes gets
stuck. To deal with such a problem, Toutounji and Pasemann [18] proposed self-
regulating neurons with short-term plasticity [19]. This allows an agent to avoid
sharp corners. However, in this approach, different to our control proposed here,
it requires multiple distance sensors for successful obstacle avoidance and the
activity states have to be predefined.

In contrast to the previous approaches, we introduce neural control with
synaptic plasticity which results in an adaptive obstacle avoidance strategy by
using only two distance sensors. It is based on a two-neuron recurrent network
with online correlation-based learning which adapts the synaptic weights of the
network and thus changes the neural dynamics [13].

Recurrent networks have been proven useful in robot control [14, 15] and in
this case enables the drone to successfully navigate in complex environments by
avoiding collision and escaping from deadlocks or sharp corners. The simple re-
current network does not rely on global or memorized information, but, instead,
learns and adapts to each situation as its arise.

In the future, we plan to transfer the neural control approach to a real drone.
Accidental collisions can lead to damage to the drone. Thus, to ensure the safety
in case the proposed control fails, propeller protection or prop guards will be
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installed on the drone, like the Lumenier Danaus drone1. This will allow for
minor collisions where the control will still be able to learn and react before
serious damage will occur.

5 Conclusion

In this study, we introduced neural control and synaptic plasticity for adaptive
obstacle avoidance of an autonomous drone. The V-REP simulator was used to
simulate a drone and different environments as well as to evaluate the perfor-
mance of the developed controller and demonstrate the obstacle avoidance be-
havior. The core control mechanism is based on a two-neuron recurrent network.
The network receives sensory inputs and translates them into proper motor com-
mands through post-processing neural units for pitch and yaw control. Online
correlation-based learning with synaptic scaling was employed for synaptic plas-
ticity of the recurrent network. In principle, this online learning mechanism can
increase or decrease the weights with respect to the interaction of the drone with
its environment; thereby changing neural dynamics in the network (e.g., various
hysteresis effects). This changing neural dynamics can be utilized for generat-
ing different turning angles with short-term memory when facing to different
obstacles, corners, and deadlocks. This results in adaptively avoiding obstacles
and escaping from corners/deadlocks. Furthermore, this also enables the drone
to successfully explore and navigate in cluttered unknown environments. In the
future, we will transfer the developed neural control approach to a real drone in
order to test the adaptive obstacle avoidance behavior in a real environment.
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