
A scalable Echo State Networks hardware generator
for embedded systems using high-level synthesis

Nan-Sheng Huang, Jan-Matthias Braun, Jørgen Christian Larsen, Poramate Manoonpong
Embodied AI and Neurorobotics Laboratory

Mærsk Mc-Kinney Møller Institute, University of Southern Denmark
Odense M, Denmark

{nan, j-mb, jcla, poma}@mmmi.sdu.dk

Abstract—Reservoir computing (RC) features with the rich
computational dynamics is a kind of powerful machine learning
paradigm that is well suited for non-linear time-series prediction
and classification problems. However, this impressive perfor-
mance comes with a cost of complex arithmetic operations and
high memory usage that make it significantly challenging to
deploy on embedded systems. Solutions based on CPU and/or
GPU-based designs, provides flexibility but suffers from a lack
of efficiency in terms of power, performance, and area (PPA).
Although hardware-accelerated solutions can improve efficiency,
it takes longer design cycles and is time-consuming. Furthermore,
it may happen that design spec requires run change due to
the fact that the network is retrained with the new data set
to improve the performance. It leads to extra effort in the
redesign of the hardware-accelerated solution. This preliminary
work presents the design and implementation of a hardware
generator for RC-ESNs (echo state networks) to tackle the
problem. The proposed methodology is demonstrated by various
offline-trained network parameters and topologies. Compared to
existing solutions, the proposed framework provides scalability
in agile hardware design.

Index Terms— Neural Networks; Reservoir Computing; Echo
State Networks; Hardware Accelerator; Embedded Systems; High-
Level Synthesis

I. INTRODUCTION

Machine learning (ML) has within the last 5 years become
an important and powerful development within Neural Net-
works (NNs). However, one of the vital research problems
in ML is to predict the future sequence of values from the
available past sequence of observed data sets. Among the
state-of-the-art algorithms in publications, reservoir computing
(RC), which is a brain-inspired paradigm, has been proven
a novel and effective framework to tackle the prediction
problem[1]. For instance, echo state networks (ESNs), liquid
state machines (LSMs) and time delay reservoirs (TDRs)
are three main variants of the reservoir algorithm which has
been widely exploited by researchers for many kinds of ML
applications such as non-linear time-series processing, robotic
control, and hard classification tasks[2]. Thus, it is a trend-
ing to develop intelligent embedded systems by empowering
embedded devices with the capability to process and interpret
plenty of noisy and sophisticated measured data sets for further
prediction.

Despite its impressive performance, deploying RC on a low-
power real-time embedded system is still a challenging task

due to computationally expensive operations, recurrence and
the random connection structure. On one hand, CPU and GPU-
based solution provide flexibility in development but they lack
efficiency compared to hardware (HW) accelerated solution in
terms of power, performance, and area (PPA)[3]. On the other
hand, even though some hardware accelerated architectures
have been proposed previously, it still takes significant efforts
to implement, even for a developer with an in-depth under-
standing of digital hardware design. For example, it usually
consumes several weeks or even months to design and verify
a handcrafted digital Neural Network (NN) implementation
from scratch by virtue of Verilog, VHDL or SystemVerilog
as design entry. If the developer adopts high-level synthesis
(HLS) tools, it can drastically lower the development time[4].
However, even if the HLS employs C/C++ as design entry to
generate RTL (register-transfer level) and if the user expects to
obtain optimized hardware for performance, power and area
requirement, it implies either a highly skilled RTL designer
or that the designer has a steep learning curve to cross in
order to harness HLS tools for efficient hardware design[5].
Furthermore, algorithm development is always a process of
continuous improvement which means it may evolve with new
data sets in the future. The retrain of NNs may result in
the run change of network parameters and topologies. Thus,
enabling ML hardware accelerator in embedded systems is
often a practical but daunting task.

In this preliminary work, a scalable RC-ESNs hardware
generator for embedded computing is presented. We exploit
the methodology of HLS in conjunction with design automa-
tion to automatically transform an offline-trained RC-ESNs
algorithm into embedded hardware accelerator for FPGA
applications. This approach removes the steep learning curve
that the developer otherwise would have to tackle. Firstly, the
complexity profiling for the RC-ESNs algorithm is conducted
to explore the adequate generic building blocks. Secondly,
according to the analysis result, a pipelined and parallel
layered microarchitecture is presented. Next, by leveraging
the capability of design pattern template in HLS C/C++, the
scalable hardware generator is proposed to shorten the turn-
around time in hardware development. Furthermore, design-
space exploration (DSE) can also be applied to the generated
hardware module for further PPA optimization in HLS. Finally,
a case study applied in the development of BMI (Brain-



Machine Interface) proactive control system is presented to
demonstrate the feasibility of the hardware generator. To our
best knowledge, this is the first work to develop a hardware
generation tool for reservoir computing.

The next section of the paper describes the overview of
RC-ESNs algorithm. Related works and design challenges are
elaborated in Section III. The preliminary RC-ESNs hardware
generator is proposed in Section IV. Section V presents some
of the results, analysis, and discussion. The paper is concluded
in Section VI with future research works.

II. OVERVIEW OF RC-ESNS

The ESN model, based on the RC framework, is depicted in
Fig. 1. It is composed of three basic layers: one input layer, one
hidden (either internal or reservoir) layer and one output layer.
In this case study, connections of the input-to-output layer
and output-to-reservoir layer are not used temporarily. The
functionality of the neurons in the input layer is to transport
the input to the next layer. For the connection between input
and reservoir layer, it is featured by random and recurrent
connections associated with a given sparsity which is one of
the parameters in ESNs. The connection of reservoir-to-output
layer is fully connected.

The discrete time state dynamics of reservoir neurons is
given in the following equations as [6]:

x(t+ 1) = (I − Λ)θ(t) + Λ(Wsysθ(t)) +Winv(t) (1)

y(t) = Woutx(t) (2)

λi =
1

Tc
(

1

1 + ρi
) (3)

θi(t) = tanh(aixi(t) + bi) (4)

where x(t) is the vector of dynamic reservoir state activation,
v(t) is the vector of time-dependent input, y(t) is the vector
of output neurons, Λ = (λ1, λ2, · · · , λN )T is the collection
of the individual leak decay rates which each reservoir neuron
has, ρi is the leak control parameter which can be modulated
by a global time constant Tc >0, ai governs the slope of the
firing rate curve and bi is the bias value of individual neuron.

III. RELATED WORKS AND DESIGN CHALLENGES

To satisfy the stringent requirements for real-time embedded
systems, parallel hardware acceleration of NNs, in particular,
has become increasingly popular by virtue of good perfor-
mance and better energy-efficiency compared to CPUs and
GPUs [7].

Reference [8] presented the use of stochastic computing to
reduce the hardware resources required to implement different
arithmetic operations in RC-ESNs, which was the first hard-
ware implementation example of an RC system using classical
sigmoid neurons. The major advantage of the stochastic logic
design is soft-error tolerance, low-power consumption, and low

Input OutputReservoir

Win
Wout

Wsys

Wback

fixed connection

trained connection

Fig. 1. Block Diagram of RC-ESNs

hardware cost but with the price of long computation time
and design time. In [9], a real-time hardware-based FPGA
architecture for RC-ESNs as recurrent neural network(RNN)
training was designed. The author showed that it was the
first time to design the hardware for real-time training of
RC-ESNs on FPGA. A folded architecture ESNs processor
with online training on FPGA was also presented by [10].
Reference [11] proposed an efficient parallel implementation
of RC-ESNs systems by simplifying the synapses and using
linear piece-wise activation functions for neurons on an FPGA.
The maximum neuron numbers presented in this work is 300.

The general development flow of NNs comprises a train-
ing phase and a classification/inference phase. However, the
quality of the training phase mainly depends on the quality of
input data sets. On one hand, the data sets may be incomplete
or problematic in the early development stage. On the other
hand, data sets of the corner cases may be collected in the late
stage after deployment which is not employed in the previous
training phase. Both cases require to have iterations in the
training phase, even though the NNs is offline-trained. It may
result in the run change of not only the weight values but
also the topology and structure of the NNs. Hence, it ends
up with the redesign of the hardware accelerator which takes
the extra resources, efforts and time for the hardware team.
Furthermore, the schedule may slip to miss the milestone.
Nevertheless, the aforementioned related works only focus on
the efficient hardware implementation of RC-ESNs assuming
that the design specification is ready and stable.

Therefore, these design challenges motivate to propose a
scalable hardware generator for RC-ESNs in this paper. To
the best of our knowledge, this is the first work to address the
problem in the hardware design of RC.

IV. THE PROPOSED RC-ESNS HARDWARE GENERATOR

This section elaborates on the design method of the pro-
posed RC-ESNs hardware generator. The use case of the
hardware generator is shown in Fig. 2. Firstly, algorithm
developers begin to train NNs after getting training data. After
training, the offline-trained parameters of the NNs are provided
for further implementation of the hardware accelerator. During



Getting 
Training Data

Training 
NNs

Hardware 
Implementation

Hardware 
Generation

Spec. 
Run Change

Spec. 
Run Change

In days or weeks

In seconds or minutes

Fig. 2. Various Iteration Flows for Hardware Run Changes

the period of hardware design and testing, the availability of
new data sets may trigger the specification run change owing
to retraining the NNs. The run change may result in noticable
efforts of the hardware team to modify the design including
re-verifying. However, when it adopts the method of hardware
generation, the run change only requires to trigger the push-
button flow instead of manual re-design.

A. Analysis and Design of LEGO-like HW Building Blocks

First of all, when it comes to the data dependence, the data
flow of RC-ESNs depends on the output of the previous layer
and the output of the recurrent connections within the reservoir
layer compared to feedforward neural networks.

Next, on one hand, if we observe the operations of the
neurons in the reservoir and output layer, the underlying
building blocks are multiply-accumulators (MACs) in addition
to other logic primitives. On the other hand, from the (1)
to (4), the coarse-grained build blocks are matrix-vector-
multiplication (MVM) and tanh in addition to memory access.

For the non-linear activation function tanh, one of the well-
known solutions for hardware implementation is to adopt
the piece-wise linear (PWL) method in-which different line
segments with specific slope and offset are exploited. In this
work, the 16-segment PWL model is exploited to approximate
the tanh function.

To further reduce the PPA in hardware, we take advantage of
the characteristic of sparsity in Win and Wsys by transforming
the MVM with sparse matrix-vector multiplication (spMVM).
spMVM is a kind of irregular algorithm but only stores non-
zero values of the weight matrix. Given that the reservoir layer
has 300 neurons with a sparsity 80%, considerable operations
of MACs and weight memory can be saved to improve the
PPA.

B. RC-ESNs HW Microarchitecture

After consolidating the above analysis of the building blocks
in RC-ESNs algorithm, a pipelined and parallel hardware
architecture is devised as shown in Fig. 3. The blue circle
means spMVM block, the red circle is the scalar multiplier
and the yellow circle represents the MVM module. In the

X X X

+

PWL
Tanh

X
Reservoir
Memory

+

PWL
Tanh

X

Pipeline stage

Win Wsys Woutv(t)Lamda 1-Lamda

Fig. 3. Pipelined and Parallel Microarchitecture of the RC-ESNs

bottom of the architecture, the output of the adder is restored
to the reservoir memory bank to realize the delay behavior of
the previous state. The inputs and outputs are implemented as
either programmable registers or memory blocks which can
be changed on-the-fly.

C. Design Pattern for RC-ESNs Hardware Generator

Design patterns are a kind of solution methodologies to
a recurring problem which has broadly popularized in the
field of software engineering [12]. The major merits are to
achieve good modularity, reusability, and flexibility. However,
in [13] further advocated the study of design patterns for
reconfigurable hardware computing, attempting to facilitate
developers to mitigate the recurring design challenges in
reconfigurable hardware design.

By transforming the problem of the frequent run changes of
network topology and parameters in the training of NNs into
a recurring design problem, the design pattern methodology
is adopted as the framework of the hardware generator in this
work. Firstly, the HLS C/C++ is used to capture the circuit
behavior of the coarse-grained building blocks and RC-ESNs
microarchitecture. Meanwhile, the method of design pattern is
applied during development and results in the design pattern
template library for RC-ESNs. Secondly, a hyperparser is
presented to monitor and parse the specification of the updated
offline-trained networks to reconfigure the code generation
from the hardware design pattern library. Next, the generated



HLS C/C++ codes are forwarded to Xilinx HLS tool for fur-
ther design-space exploration [14]. Lastly, the corresponding
Verilog/VHDL codes are generated in HLS. The framework
and the whole user flow are illustrated in Fig. 4.

3rd party RC-ESNs
Training Tools

Hyperparser

RC-ESN HW
Microarchitecture

Design Space Exploration

Verilog/VHDL Code Generation

Coarse-grained
Building Blocks

Design Pattern 
Template Lib. 

Specification of Offline-trained NNs

The Proposed 
HW Generator

Generated HLS C/C++

Xilinx HLS Tool

Fig. 4. The Proposed Hardware Generator

V. EXPERIMENTAL RESULTS

In this section, the proposed RC-ESNs hardware generator
is demonstrated by the following case studies in the Plan4Act
project [15]. The aim of Plan4Act is to provide new emerging
technologies from spiking neural activity to proactive BMI
control in the embedded systems, to show its effectiveness.
Assuming that the hardware implementation exploits 32-bit
floating point as precision to have similar prediction per-
formance to the software one. The various sparsities are
associated with the weight matrix of input-to-reservoir and
reservoir-to-reservoir layer. For the continuous improvement
of network performance, the software team retrains the RC-
ESNs by utilizing new data sets obtained and collected from
field tests at different times. It results in the run changes in
both weight values and network topology.

As reported in Table I, there are 3 different offline-trained
network topologies generated during the process of design
iterations. Case 1 has 200 input neurons with sparse matrix
69.775%, 100 reservoir neurons with sparse matrix 80.23%

and 10 output neurons. The variations of Case 2 and Case 3
fall in the spare matrices and number of reservoir neurons
which sparsity is 70% in the input layer, 200 neurons in
reservoir layer with sparsity 79% in Case 2, and 72% sparsity
, 300 neurons in reservoir layer with 82% sparsity in Case 3,
respectively. They all are generated by the proposed hardware
generator within less than 90 sec. In the table, results of HLS
synthesis are illustrated by two figures separated by backslash
which represent the non-pipelined (left side) and pipelined
version (right side) individually. For example, non-pipelined
version consumes 296,662 cycles and pipelined version con-
sumes 118,462 cycles with the same clock speed 9.55 ns.
The pipelined version is obtained via compiler directives from
design-space exploration in HLS. As it can be seen, the more
reservoir neurons, the more significant BRAM consumption.
From the perspective of hardware execution time in terms of
latency for these two versions, Case 1 has 2.5X improvement,
Case 2 gets 2.64X enhancement and Case 3 obtains 2.69X
speed up in pipelined design. Furthermore, this work can
support the arbitrary number of neurons with various sparsity
and weight matrix configurations if the user targets FPGA with
high area capacity.

The capability of the hardware generator is summarized
and qualitatively compared to prior RC-ESNs accelerators as
shown in Table II. Previous implementations are all based on
RTL design in which the microarchitecture is fixed at design
time. By leveraging the HLS methodology together with the
design of hardware generator, it considerably mitigates the
problem to support the scalable change of network topology.
Moreover, according to the user’s specific requirements, it
also supports the design-space exploration in which the PPA
is adjustable such as the pipelined method presented in the
previous paragraph.

Overall, the RC-ESNs hardware generator provides notice-
ably benefit over previous implementations, which do not
have scalability. Hence, the proposed work realizes rapid turn-
around time and illustrates the promise of the solution in
hardware design.

VI. CONCLUSIONS AND OUTLOOK

This paper has demonstrated a preliminary framework for
the design automation of RC-ESNs hardware accelerator. The
usages of the hardware generator are straightforward and
effortless to not only hardware designers but also algorithm
developers. The strength of the work hinges critically on the
configurability and reusability of the design pattern template
of the HLS C/C++ having the scalability. Therefore, it facili-
tates the whole reiterative procedure of update offline-trained
network topology into hardware design in a few minutes.

Currently, the preliminary framework only supports RC-
ESNs, but we plan to extend it to support other types of
NNs like LSMs, TDRs, and feedforward NNs. In addition,
we intend to provide a user interface, which is currently in
development. Finally, it will be expanded to support the fixed-
point format in accommodating the automatic determination



TABLE I
QUANTITATIVE ANALYSIS OF IMPLEMENTATION RESULTS OF DIFFERENT NETWORK TOPOLOGIES

Case 1 Case 2 Case 3
Size of Input Layer, Sparsity 200, 69.775% 200, 70% 200, 72%
Size of Reservoir Layer, Sparsity 100, 80.23% 200, 79% 300, 82%
Size of Output Layer 10 10 10
Estimated Clock Speed (ns) 9.55/9.55 9.55/9.55 9.55/9.55
Latency (cycles) 296,662/118,462 1,152,962/436,562 2,569,262/954,662
BRAM Usage 57/57 147/147 215/215
DSP48E Usage 19/19 19/19 19/19
FF Usage 5,348/5,438 5,397/5,487 5,446/5,336
LUT Usage 7,346/7,376 7,355/7,345 7,371/7,361
IP Generation Time <90 sec <90 sec <90 sec

TABLE II
QUALITATIVE COMPARISON WITH RELATED WORKS

[8] [10] [9] [11] This work
Design Entry RTL RTL RTL RTL HLS
Number of
Reservoir Neurons 7 50 16/32/64 300 Arbitrary

Programmable
Weight Values YES YES YES YES YES

Scalable
Network Topology NO NO NO NO YES

Design Space
Exploration NO NO NO NO YES

of fixed-point word length for further automation of PPA
optimization.

ACKNOWLEDGMENT

This research is supported by Horizon 2020 Framework
Programme (FETPROACT-01-2016FET Proactive: emerging
themes and communities) under grant agreement no. 732266
(Plan4Act).

REFERENCES

[1] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Computer Science Review, vol. 3,
no. 3, pp. 127–149, 2009.

[2] N. Soures, C. Merkel, D. Kudithipudi, C. Thiem, and N. McDonald,
“Reservoir computing in embedded systems: Three variants of the
reservoir algorithm.” IEEE Consumer Electronics Magazine, vol. 6,
no. 3, pp. 67–73, 2017.

[3] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating
compute-intensive applications with gpus and fpgas,” in Application
Specific Processors, 2008. SASP 2008. Symposium on. IEEE, 2008,
pp. 101–107.

[4] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for fpgas: From prototyping to deployment,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 30, no. 4, pp. 473–491, 2011.

[5] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi et al., “A survey and evaluation of
fpga high-level synthesis tools,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, no. 10, pp. 1591–
1604, 2016.

[6] S. Dasgupta, F. Wörgötter, and P. Manoonpong, “Information dynamics
based self-adaptive reservoir for delay temporal memory tasks,” Evolving
Systems, vol. 4, no. 4, pp. 235–249, 2013.

[7] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” CoRR, vol. abs/1705.06963, 2017.

[8] M. L. Alomar, V. Canals, N. Perez-Mora, V. Martı́nez-Moll, and J. L.
Rosselló, “Fpga-based stochastic echo state networks for time-series
forecasting,” Computational intelligence and neuroscience, vol. 2016,
p. 15, 2016.

[9] Y. Yi, Y. Liao, B. Wang, X. Fu, F. Shen, H. Hou, and L. Liu, “Fpga based
spike-time dependent encoder and reservoir design in neuromorphic
computing processors,” Microprocessors and Microsystems, vol. 46, pp.
175–183, 2016.

[10] S. Buchanan and L. Liu, “Design and fpga implementation of a folded
architecture echo state network processor with online training,” 2016.

[11] M. Alomar, E. S. Skibinsky-Gitlin, C. F. Frasser, V. Canals, E. Isern,
M. Roca, and J. L. Rosselló, “Efficient parallel implementation of
reservoir computing systems,” Neural Computing and Applications, pp.
1–15, 2017.

[12] E. Gamma, Design patterns: elements of reusable object-oriented soft-
ware. Pearson Education India, 1995.

[13] A. DeHon, J. Adams, M. DeLorimier, N. Kapre, Y. Matsuda, H. Naeimi,
M. Vanier, and M. Wrighton, “Design patterns for reconfigurable
computing,” in 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines. IEEE, 2004, pp. 13–23.

[14] Xilinx, Vivado Design Suite User Guide:
High-Level Synthesis, Feb,2017. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/sw manuals/
xilinx2017 2/ug902-vivado-high-level-synthesis.pdf

[15] EU Plan4Act project. [Online]. Available: http://plan4act-project.eu/
index.php/about/


