The Grezat Guide to MORF

The/egat/y of Mathias Thor

Mathias@mmmi.sdu.dk

Content

Introduction

Turning on/off MORF
Turn on
Turn on

MORF Color codes
XBOX Joystick shortcuts
Services

Updating software on MORF
Install ansible
Ansible commands
Update Controller
Hardware interface

ROS nodes:
dynamixel_ros_driver ROS node
blinkstick_square_driver ROS node
sharp_distance sensor
Intel tracking camera

Datal/files to and from MORF

Code repository

Motor pattern adaptation using the CPG-RBFN framework:

Frequency adaptation using DIL:
The CPG-RBFN framework
The Demo Controller

Dynamixel servo setup
Installing Dynamixel drivers
Dynamixel servos default parameters:

Battery and charging

O © © 0 N Noo o oo o oo AW WWLWW W N DN MMM DD

-
N

Introduction

All of the papers presenting MORF and its control can be found here. Specifically, the master
thesis on MORF (available here) can act as a great way to understand the system better.

If you experience any problems with the following or has additional questions, feel free to contact
me at mathias@mmmi.sdu.dk

Turning on/off MORF

Turn on

1. Plugin a charged LiPo battery

a. Plugin the flat connector first and then the yellow_power connector

b. The robot will turn off automatically if the LiPo battery is not charged enough.
2. Press the red power button and wait for the Intel NUC to turn on (shown by a green LED)
3. Press the black button and wait for the Intel NUC to boot

You can now:
e Connect to the robot with the XBOX joystick
e Connect to the wireless network called morf-redpc using the password: morf1324
o Afterward, you may use ssh morf-one@192.168.0.1 to connect to the NUC PC

Turn on

1. Press and hold the black button until the Intel NUC turns off
2. Press and hold the red power button until the green led turns off
3. Remove the battery and put it into a safe fire bag (silver bag)

MORF Color codes

The led array on the head of MORF can show different colors. Below are what the colors mean:

= motor driver is turned off and the motors are not stiff
= start motor drivers before the controller (see XBOX Joystick shortcuts)
= motor driver is turned on and the motors are stiff
Red = motor driver is turned on and controller is running

XBOX Joystick shortcuts

I+ X: Pressing down and X will turn on the motor driver

. Pressing down and Y will turn off the motor driver (note the motors will turn off)
I+ B: Pressing down and B will turn off the controller

: Pressing down and A will turn on the controller

https://mathiasthor.github.io/publications/
https://mathiasthor.github.io/assets/pdf/MORF_master.pdf
mailto:mathias@mmmi.sdu.dk

Services

The Intel Nuc PC on MORF runs several services that start on boot. An example is the blink stick
service (LEDs on the head of MORF) or the dynamixel servos.

All services are implemented in systemd (/etc/systemd/system). To implement a new service do:

1. write a .service file in /etc/systemd/system

2. write a bash script to be called form the .service file in /opt/...

3. if the service is to be called from a script using sudo; include the command in
/etc/sudoers.d/morf-one

4. enable the service if it should start at boot (e.g., sudo systemctl enable
ros-T265.service)

You can find all the services used currently here: https://github.com/MathiasThor/MORF

Updating software on MORF

To update the software on MORF (e.g., controller) we use ansible.

Install ansible

Install Ansible
e sudo apt install ansible

Ansible commands

Ansible works by using playbooks that specify what should be updated on the NUC pc.
For example, the following can be used to start and stop the locomotion controller placed on
MOREF:

e ansible-playbook -i inventory morf_controller_start.yml

e ansible-playbook -i inventory morf_controller_stop.yml

Note if you get an error about missing permissions when running the commands in the next
section, then run the following: ssh-copy-id morf-one@192.168.0.1
The MOREF playbook is placed in ~/workspace/gorobots/utils/morfscripts/ansible/Playbook.

Update Controller

Use the following playbook to update the controller of MORF:
e ansible-playbook -i inventory morf_transfer_controller.yml

This will transfers a compiled controller (binary file) from your PC:
~/gorobots/projects/morf/demo/real/catkin_ws/src/bin/morf_controller_real

to the NUC host PC (on MOREF) at:
~/gorobots-mthor/projects/morf/real/catkin_ws/src/morf _controller/bin

https://github.com/MathiasThor/MORF
https://www.ansible.com/

Use the following playbook to upload the demo controller to MORF (see The Demo Controller):
e ansible-playbook -i inventory morf_transfer_demo_controller.yml

This will transfers a compiled controller (binary file) from your PC:
~/gorobots/projects/morf/demo/real/catkin_ws/src/bin/morf_controller_real

to the NUC host PC (on MOREF) at:

~/gorobots/projects/morf/demo/real/catkRin_ws/src/morf _controller/bin/morf_contr
oller_real (REMEMBER TO COMPILE THIS CONTROLLER FIRST)

Hardware interface

Start hardware interfaces:
e ansible-playbook -i inventory morf_driver_start.yml

Starts the ROS nodes for the hardware interfaces to the IMU, Dynamixel, and LED array.
Note: This command is automatically executed at boot.
Note: This will make the joints stiff, so remember to put the legs in a sensible position before

running this command

Stop hardware interfaces:
e ansible-playbook -i inventory morf_driver_stop.yml

Stops the ROS nodes for the hardware interfaces to the IMU, Dynamixel, and LED array.

Note: This will loosen the joint, so make sure that the robot will not get damaged if this command is
executed.

Update hardware interfaces on MORF:
e ansible-playbook -i inventory morf_transfer_drivers.yml

Transfers drivers/hardware interfaces (i.e., ROS nodes) for the IMU, Dynamixel, and LED array
from ~/catkin_ws/src/* on the host pc to ~/catkin_ws/src/* on MORF

Note: You need to compile the nodes afterward - see Compiling the driver workspace on MORF
below.

Compiling the hardware interfaces workspace on MORF
e ./compile_drivers.sh (should be executed on MORF’s NUC pc via SSH)

Compiles the catkin workspace in ~/catkin_ws/ on MORF

ROS nodes:

At boot, the following hardware interfacing ROS nodes will be started:

dynamixel_ros_driver ROS node

Publishing

joint_Positions (positions of all joints in rad (float32 array))
joint_Velocities (angular velocity of all joints in rad/s (float32 array))
joint_Torques (torque of all joints in Nm (float32 array))
joint_ErrorStates (Error states (int))

Subscribes to
e multi_joint_commands (desired position in rad (float32 array))

Description:
Use multi_joint_commands to control the servos. The array should be arranged in the following
format:
e Float array: [ID1, ID1 _DESIRED POS RAD, ID2, ID2_DESIRED POS RAD, ... ,
IDn, IDn_DESIRED_POSITION_RAD]

Note that the desired positions are in radians and that the sign of the position tells the motor which
way to rotate.

blinkstick_square_driver ROS node

Subscribes to
e set_all_led (Set color as RGB (ColorRGBA msgs))
e set _single_led (Set color of led A as RGB (ColorRGBA msgs))

Description:

In the set_all_led all LEDs are set accordingly to the R, G, and B values (0-255). A is not used.

In the set_single_led the LED specified by A (0-7) is set accordingly to the R, G, and B values
(0-255)

sharp_distance sensor

Publishes
e Distance (in centimeters)

Description:
Publishes the distance measured by the sharp distance sensor on the head of MORF

Intel tracking camera

Publishes
e Video feed
e |MU
e Odometry
e and many more (you can get relative position and orientation)

Data/files to and from MORF

Usually, when | record data on morf (e.g., joint torques values), | edit the controller code to include
functions that create and write the desired data to a file. Once the experiment is over and the file
has been generated, you can download it from MORF using:

e scp morf-one@l192.168.0.1:/path/to/file /path/to/destination

To upload a file use:
e scp /path/to/file morf-one@192.168.0.1:/path/to/destination

This is, for example, used when uploading new behavior weights for the CPG-RBFN controller.

Code repository

All of the code for MORF and its controller is placed in the gorobots GitLab repository:
https://qgitlab.com/ens_sdu/gorobots

Motor pattern adaptation using the CPG-RBFN framework:

All of the code for the motor pattern adaptation mechanism can be found in the following directory:
e gorobots/projects/C-CPGRBFN/

Each of the project directories in this directory is self-contained, meaning that they do not rely on
code outside their respective directories. The following explains each of the CPGRBFN project
folders:
e CPGRBFN_compact
o This was the first version of the CPGRBFN network with no modules. It only
contains the open-loop controller as presented in this paper:
https://mathiasthor.github.io/assets/pdf/generic_neural locomotion control framew
ork.pdf
e CPGRBFN_compact v2
o This improves and cleans the code from CPGRBFN_compact (above)
e CPGRBFN_feedback v3
o In this version, we introduce the closed-loop modules as presented in this paper:
https://mathiasthor.github.io/assets/pdf/CPG_RBF_FB.pdf
e CPGRBFN_feedback nature
o Acleaned version for the Nature Machine Intelligence paper
e CPGRBFN_dil_v4
o In this version, we combine the closed-loop modules (CPGRBFN_feedback v3)
with the DIL for frequency adaptation as presented in this paper:
https://www.frontiersin.org/articles/10.3389/fncir.2021.743888/full
e CPGRBFN_BBO_v5
o Compared different learning algorithms
m CMA-ES
m PI"BB
m PI”BB with covariance adaptation
e CPGRBFN_continuous_v6

https://gitlab.com/ens_sdu/gorobots
https://mathiasthor.github.io/assets/pdf/generic_neural_locomotion_control_framework.pdf
https://mathiasthor.github.io/assets/pdf/generic_neural_locomotion_control_framework.pdf
https://mathiasthor.github.io/assets/pdf/CPG_RBF_FB.pdf
https://www.frontiersin.org/articles/10.3389/fncir.2021.743888/full

o Displays continuous learning for the Autonomous lifelong learning project. Ideally,
this may be transferred directly to a real robot. However, before this is possible, the
learning loop needs to be set up on MOREF. l.e., the machine learning code (python
files) and the directories for the .json files.

Information on how the CPG-RBFN framework can be used is found in The CPG-RBEN
framework.

Frequency adaptation using DIL:

The newest code for the DIL, as used in
https://www.frontiersin.org/articles/10.3389/fncir.2021.743888/full, can be found in:
e gorobots/projects/C-CPGRBFN/CPGRBFN_dil v4

The older code (where it calculates the error from the amplitude and not the shape as in the above)
as used in https://mathiasthor.qithub.io/assets/pdf/DIL.pdf and

https://mathiasthor.qgithub.io/assets/pdf/RAL_DIL.pdf can be found here:
e gorobots/controllers/neutron

The CPG-RBFN framework

A comprehensive guide for using the CPG-RBF controller can be found here:
https://github.com/MathiasThor/CPG-RBFN-framework

The following explain in short how the framework functions (assuming you are working in
CPGRBFN_feedback_v3):

In the machine_learning directory, all the code for the learning algorithm is placed (e.g., pi*bb).
This also includes the communication to the simulation program (CoppeliaSim) as well as the code
for running several simulation instances in parallel to speed up learning. The main file in the
machine_learning directory is RL_master.py. Here you may set up things like the learning rate,
the behavior to be learned (e.g., pipe climbing, base behavior, obstacle reflex controller, etc.), type
of robot, learning algorithm, and so on.

In interfaces/morf/sim/morf_controller_script.lua is the simulation script that is
responsible for mimicking the real-life MORF robot and setting up the simulation environment. The
script, therefore, creates ROS nodes, configures the simulation, and collects data that is sent to the
controller or machine learning script (e.g., for calculating the reward).

In neural_controllers/morf/sim/ is all the code for the controller running on MORF. This
includes the CPG and RBF networks as well as DIL and any configuration of the robot (e.g.,
behavior mode, sensory feedback, and joint limits).

Note that when you want to learn a new behavior is has to be implemented in both the machine
learning code and the controller code. This includes its reward function, behavior index, etc. A
good approach is to look at the implementation of an existing behavior (e.g., direction) and use it
as a template. Also, remember to suppress the other behaviors in

https://www.frontiersin.org/articles/10.3389/fncir.2021.743888/full
https://mathiasthor.github.io/assets/pdf/DIL.pdf
https://mathiasthor.github.io/assets/pdf/RAL_DIL.pdf
https://github.com/MathiasThor/CPG-RBFN-framework

neural_controllers/morf/sim/neutronController.cpp (by fixing the sensory input to the
behaviors to 0 — e.g.: postProcessedSensoryFeedback[behaviour_index][j] = ©;) such
that the other behaviors are not triggered during learning. Once a new behavior is learned, you can
take the .json file from either data/jobs/ or data/storage/ (if you did not stop the learning
before time) and place it in the data directory (probably you want to rename it at this point).
Assuming you have implemented the new behavior correctly, you need to specify the directory of
the new behavior in the readParameterSet function in neutronController.cpp. You may then
implement the new behavior in machine_learning/run_sim.sh and run the script to test the
behavior. It is not an easy process, but you will get the idea after some time with the code.

The Demo Controller

To show off the real MORF hexapod robot you may use the demo controller. It is simply using a
CPG without any adaptation modules. Instead is has hardcoded behaviors that can be triggered
with the XBOX controller. The commands are specified below:

Decrease walking height Increase walking height

X: decrease speed (hold)
. increase speed (hold)

B: Perform a push-up

. Poke with left front leg

Reset walking
height

“click* 9

Reset walking
speed

+ + X: turn on the motor driver
* . turn off the motor driver
*"' B: tum off the controller
+ A turn on the controller

To upload the demo controller to MORF see Update Controller.

Dynamixel servo setup

The Dynamixel servos are all connected to a U2D2 (see image below) that connects to the NUC pc
via USB. For testing a single servo it can also be connected to the U2D2 (and a power connector -
see also the guide by Cao) that is then connected to your personal PC.

SERVO
XM430-W350-R
USB COMM. CONVERTER
uz2p2

USB Cable

L+ POWER LINE (SMPS 12V 5A)

POWER BOARD
SMPS2Dynamixel

Installing Dynamixel drivers

Set USB latency
Start by setting the USB latency on the NUC or your personal PC for fast communication. This can
be done by running the following command (assuming U2D2 is connected to USBO0):
e sudo usermod -aG dialout $USER && echo 1 | sudo tee
/sys/bus/usb-serial/devices/ttyUSBO/latency_timer

You can check it by running the following:
e cat /sys/bus/usb-serial/devices/ttyUSBO/latency_timer

Install dependencies
The following dependencies need to be installed on the nuc or your personal PC.
1. Install ROS
2. Dynamixel SDK and ROS Controller
a. Run the following commands to install the remaining dependencies:

i. sudo apt-get install -y git cmake python-tempita
python-catkin-tools python-1xml xsltproc qt4-gmake libqt4-dev
libgscintilla2-dev

b. Run the following to install the Dynamixel Workbench used for communicating with
the servos through ROS:

i. sudo apt-get install ros-melodic-dynamixel-sdk
ii. mkdir ~/catkin_ws && cd ~/catkin_ws
iii. mkdir src && cd src
iv. git clone
https://github.com/MathiasThor/my_dynamixel workbench.git
V. git clone

https://github.com/MathiasThor/dynamixel-workbench.git

vi. git clone
https://github.com/ROBOTIS-GIT/dynamixel-workbench-msgs.git
vii. git clone https://github.com/stonier/qt_ros

viii. cd dynamixel-workbench-msgs && git checkout
f91ae7dbd5d368a3121ca5bb901771b2e6471c01
ix. source /opt/ros/melodic/setup.bash

X. source /home/$USER/catkin_ws/devel/setup.sh
c. Inorderto add the above command to your .bashrc use the following command:
i. gedit ~/.bashrc
d. and add the following in the end of the file:
i. source /opt/ros/melodic/setup.bash
ii. source /home/$USER/catkin_ws/devel/setup.sh
e. Finally, compile the dynamixel ros controller:
i. cd ../.. & & catkin_make
3. Setup automatic startup (not required)
a. see Services

Now you can connect to a single or multiple servos using the following commands respectively:
e roslaunch my dynamixel workbench_tutorial single manager_4mil.launch
e roslaunch my dynamixel workbench_tutorial multiple motor_test.launch
Note the above is for bautrate 4000000. If standard bautrate use:
e roslaunch my_dynamixel workbench_tutorial single manager.launch

With the single_manager you can specify the values of the motor. After you see “init success!”
hit enter. Now you can set all the parameters of the servo (see them all here:
https://emanual.robotis.com/docs/en/dxl/x/xm430-w350/). Alternatively, you may use the
dynamixel_wizard app for Windows

(https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_wizard2/)

Note if you get an “error opening serial port!” error, run the following:
e sudo chmod 777 /dev/ttyUSB@O

Dynamixel servos default parameters:

The dynamixel servos used on MORF are XM430-W350-R. Detailed information about the servos
can be found here. Notice that the servo has a lot of changeable parameters. These are set as
follows per default:

10

https://emanual.robotis.com/docs/en/dxl/x/xm430-w350/
https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_wizard2/
https://emanual.robotis.com/docs/en/dxl/x/xm430-w350/

18

11

12

13

28

24

3

a2

34

36

38

43

52

63

Note that the IDs are set accordingly to the below figure:

Model Wumber
Model Information
Firmware Version
ID

Baud Rate (Bus)
Return Delay Time
Drive Mode

Operating Mode

Secondary(Shadow) ID

Protocol Version
Homing Offset
Moving Threshold
Temperature Limit
Max Voltage Limit
Min Voltage Limit
PWM Limit

Current Limit
Velocity Limit

Max Position Limit
Min Position Limit

Shutdown

1828

4

52

18

ga

168

a5

885

1193

1823

4895

52

XM438-W358

ID 52
4 Mbps

8 [psec]

Position control
Disable
Protocol 2.8
8.00 [°]
2.29 [rev/min]
g8 [=°c]
16.88 [V]
9.58 [v]
168.88 [%]
3209.17 [mA]
234.27 [rev/min]
360.00 [°]

11

LEG 6

63
62
61

31
32
33

LEG 3

The parameters can be changed using the ROS single manager (as described above) or by
following the guide from Cao Danh Do (for windows users). Generally, the parameters will only be
changed once when building the robot or replacing servos. Note: Pay attention to the small dot on
the horn of the servos when replacing them!

Battery and charging

MOREF requires 22.2V or a 6 cell lipo battery. Currently, it has a 3D printed battery holder for a
Zippy Compact 25C Series 5800 (see image below) - however, you can print a new holder for
another 6 celled battery.

MOREF will automatically shut down when the lipo battery is drained. To charge the battery use a
lipo charger (i used the blue Hyperion - see image below) and set C=5800mAh and charge with
5.8A.

12

