
The Great Guide to MORF
The legacy of Mathias Thor

Mathias@mmmi.sdu.dk

Content
Introduction 2

Turning on/off MORF 2
Turn on 2
Turn on 2

MORF Color codes 2

XBOX Joystick shortcuts 2

Services 3

Updating software on MORF 3
Install ansible 3
Ansible commands 3

Update Controller 3
Hardware interface 4

ROS nodes: 5
dynamixel_ros_driver ROS node 5
blinkstick_square_driver ROS node 5
sharp_distance sensor 5
Intel tracking camera 5

Data/files to and from MORF 6

Code repository 6
Motor pattern adaptation using the CPG-RBFN framework: 6
Frequency adaptation using DIL: 7

The CPG-RBFN framework 7

The Demo Controller 8

Dynamixel servo setup 9
Installing Dynamixel drivers 9
Dynamixel servos default parameters: 10

Battery and charging 12

1

Introduction
All of the papers presenting MORF and its control can be found here. Specifically, the master
thesis on MORF (available here) can act as a great way to understand the system better.

If you experience any problems with the following or has additional questions, feel free to contact
me at mathias@mmmi.sdu.dk

Turning on/off MORF

Turn on
1. Plugin a charged LiPo battery

a. Plugin the flat connector first and then the yellow power connector
b. The robot will turn off automatically if the LiPo battery is not charged enough.

2. Press the red power button and wait for the Intel NUC to turn on (shown by a green LED)
3. Press the black button and wait for the Intel NUC to boot

You can now:
● Connect to the robot with the XBOX joystick
● Connect to the wireless network called morf-redpc using the password: morf1324

○ Afterward, you may use ssh morf-one@192.168.0.1 to connect to the NUC PC

Turn on
1. Press and hold the black button until the Intel NUC turns off
2. Press and hold the red power button until the green led turns off
3. Remove the battery and put it into a safe fire bag (silver bag)

MORF Color codes
The led array on the head of MORF can show different colors. Below are what the colors mean:

Yellow = motor driver is turned off and the motors are not stiff
Blinking yellow = start motor drivers before the controller (see XBOX Joystick shortcuts)
Green = motor driver is turned on and the motors are stiff
Red = motor driver is turned on and controller is running

XBOX Joystick shortcuts
↧+ X: Pressing down and X will turn on the motor driver
↧+ Y: Pressing down and Y will turn off the motor driver (note the motors will turn off)
↧+ B: Pressing down and B will turn off the controller
↧+ A: Pressing down and A will turn on the controller

2

https://mathiasthor.github.io/publications/
https://mathiasthor.github.io/assets/pdf/MORF_master.pdf
mailto:mathias@mmmi.sdu.dk

Services
The Intel Nuc PC on MORF runs several services that start on boot. An example is the blink stick
service (LEDs on the head of MORF) or the dynamixel servos.

All services are implemented in systemd (/etc/systemd/system). To implement a new service do:

1. write a .service file in /etc/systemd/system
2. write a bash script to be called form the .service file in /opt/...
3. if the service is to be called from a script using sudo; include the command in

/etc/sudoers.d/morf-one

4. enable the service if it should start at boot (e.g., sudo systemctl enable
ros-T265.service)

You can find all the services used currently here: https://github.com/MathiasThor/MORF

Updating software on MORF
To update the software on MORF (e.g., controller) we use ansible.

Install ansible
Install Ansible

● sudo apt install ansible

Ansible commands
Ansible works by using playbooks that specify what should be updated on the NUC pc.
For example, the following can be used to start and stop the locomotion controller placed on
MORF:

● ansible-playbook -i inventory morf_controller_start.yml

● ansible-playbook -i inventory morf_controller_stop.yml

Note if you get an error about missing permissions when running the commands in the next
section, then run the following: ssh-copy-id morf-one@192.168.0.1
The MORF playbook is placed in ~/workspace/gorobots/utils/morfscripts/ansible/Playbook.

Update Controller
Use the following playbook to update the controller of MORF:

● ansible-playbook -i inventory morf_transfer_controller.yml

This will transfers a compiled controller (binary file) from your PC:
~/gorobots/projects/morf/demo/real/catkin_ws/src/bin/morf_controller_real

to the NUC host PC (on MORF) at:
~/gorobots-mthor/projects/morf/real/catkin_ws/src/morf_controller/bin

3

https://github.com/MathiasThor/MORF
https://www.ansible.com/

Use the following playbook to upload the demo controller to MORF (see The Demo Controller):
● ansible-playbook -i inventory morf_transfer_demo_controller.yml

This will transfers a compiled controller (binary file) from your PC:
~/gorobots/projects/morf/demo/real/catkin_ws/src/bin/morf_controller_real

to the NUC host PC (on MORF) at:
~/gorobots/projects/morf/demo/real/catkin_ws/src/morf_controller/bin/morf_contr

oller_real (REMEMBER TO COMPILE THIS CONTROLLER FIRST)

Hardware interface
Start hardware interfaces:

● ansible-playbook -i inventory morf_driver_start.yml

Starts the ROS nodes for the hardware interfaces to the IMU, Dynamixel, and LED array.

Note: This command is automatically executed at boot.
Note: This will make the joints stiff, so remember to put the legs in a sensible position before
running this command

Stop hardware interfaces:
● ansible-playbook -i inventory morf_driver_stop.yml

Stops the ROS nodes for the hardware interfaces to the IMU, Dynamixel, and LED array.

Note: This will loosen the joint, so make sure that the robot will not get damaged if this command is
executed.

Update hardware interfaces on MORF:
● ansible-playbook -i inventory morf_transfer_drivers.yml

Transfers drivers/hardware interfaces (i.e., ROS nodes) for the IMU, Dynamixel, and LED array
from ~/catkin_ws/src/* on the host pc to ~/catkin_ws/src/* on MORF

Note: You need to compile the nodes afterward - see Compiling the driver workspace on MORF
below.

Compiling the hardware interfaces workspace on MORF
● ./compile_drivers.sh (should be executed on MORF’s NUC pc via SSH)

Compiles the catkin workspace in ~/catkin_ws/ on MORF

ROS nodes:
At boot, the following hardware interfacing ROS nodes will be started:

4

dynamixel_ros_driver ROS node
Publishing

● joint_Positions (positions of all joints in rad (float32 array))
● joint_Velocities (angular velocity of all joints in rad/s (float32 array))
● joint_Torques (torque of all joints in Nm (float32 array))
● joint_ErrorStates (Error states (int))

Subscribes to
● multi_joint_commands (desired position in rad (float32 array))

Description:
Use multi_joint_commands to control the servos. The array should be arranged in the following
format:

● Float array: [ID1, ID1_DESIRED_POS_RAD, ID2, ID2_DESIRED_POS_RAD, ... ,

IDn, IDn_DESIRED_POSITION_RAD]

Note that the desired positions are in radians and that the sign of the position tells the motor which
way to rotate.

blinkstick_square_driver ROS node
Subscribes to

● set_all_led (Set color as RGB (ColorRGBA msgs))
● set_single_led (Set color of led A as RGB (ColorRGBA msgs))

Description:
In the set_all_led all LEDs are set accordingly to the R, G, and B values (0-255). A is not used.
In the set_single_led the LED specified by A (0-7) is set accordingly to the R, G, and B values
(0-255)

sharp_distance sensor
Publishes

● Distance (in centimeters)

Description:
Publishes the distance measured by the sharp distance sensor on the head of MORF

Intel tracking camera
Publishes

● Video feed
● IMU
● Odometry
● and many more (you can get relative position and orientation)

5

Data/files to and from MORF
Usually, when I record data on morf (e.g., joint torques values), I edit the controller code to include
functions that create and write the desired data to a file. Once the experiment is over and the file
has been generated, you can download it from MORF using:

● scp morf-one@192.168.0.1:/path/to/file /path/to/destination

To upload a file use:
● scp /path/to/file morf-one@192.168.0.1:/path/to/destination

This is, for example, used when uploading new behavior weights for the CPG-RBFN controller.

Code repository
All of the code for MORF and its controller is placed in the gorobots GitLab repository:
https://gitlab.com/ens_sdu/gorobots

Motor pattern adaptation using the CPG-RBFN framework:
All of the code for the motor pattern adaptation mechanism can be found in the following directory:

● gorobots/projects/C-CPGRBFN/

Each of the project directories in this directory is self-contained, meaning that they do not rely on
code outside their respective directories. The following explains each of the CPGRBFN project
folders:

● CPGRBFN_compact
○ This was the first version of the CPGRBFN network with no modules. It only

contains the open-loop controller as presented in this paper:
https://mathiasthor.github.io/assets/pdf/generic_neural_locomotion_control_framew
ork.pdf

● CPGRBFN_compact_v2
○ This improves and cleans the code from CPGRBFN_compact (above)

● CPGRBFN_feedback_v3
○ In this version, we introduce the closed-loop modules as presented in this paper:

https://mathiasthor.github.io/assets/pdf/CPG_RBF_FB.pdf
● CPGRBFN_feedback_nature

○ A cleaned version for the Nature Machine Intelligence paper
● CPGRBFN_dil_v4

○ In this version, we combine the closed-loop modules (CPGRBFN_feedback_v3)
with the DIL for frequency adaptation as presented in this paper:
https://www.frontiersin.org/articles/10.3389/fncir.2021.743888/full

● CPGRBFN_BBO_v5
○ Compared different learning algorithms

■ CMA-ES

■ PI^BB

■ PI^BB with covariance adaptation

● CPGRBFN_continuous_v6

6

https://gitlab.com/ens_sdu/gorobots
https://mathiasthor.github.io/assets/pdf/generic_neural_locomotion_control_framework.pdf
https://mathiasthor.github.io/assets/pdf/generic_neural_locomotion_control_framework.pdf
https://mathiasthor.github.io/assets/pdf/CPG_RBF_FB.pdf
https://www.frontiersin.org/articles/10.3389/fncir.2021.743888/full

○ Displays continuous learning for the Autonomous lifelong learning project. Ideally,
this may be transferred directly to a real robot. However, before this is possible, the
learning loop needs to be set up on MORF. I.e., the machine learning code (python
files) and the directories for the .json files.

Information on how the CPG-RBFN framework can be used is found in The CPG-RBFN
framework.

Frequency adaptation using DIL:
The newest code for the DIL, as used in
https://www.frontiersin.org/articles/10.3389/fncir.2021.743888/full, can be found in:

● gorobots/projects/C-CPGRBFN/CPGRBFN_dil_v4

The older code (where it calculates the error from the amplitude and not the shape as in the above)
as used in https://mathiasthor.github.io/assets/pdf/DIL.pdf and
https://mathiasthor.github.io/assets/pdf/RAL_DIL.pdf can be found here:

● gorobots/controllers/neutron

The CPG-RBFN framework
A comprehensive guide for using the CPG-RBF controller can be found here:
https://github.com/MathiasThor/CPG-RBFN-framework

The following explain in short how the framework functions (assuming you are working in
CPGRBFN_feedback_v3):

In the machine_learning directory, all the code for the learning algorithm is placed (e.g., pi^bb).
This also includes the communication to the simulation program (CoppeliaSim) as well as the code
for running several simulation instances in parallel to speed up learning. The main file in the
machine_learning directory is RL_master.py. Here you may set up things like the learning rate,
the behavior to be learned (e.g., pipe climbing, base behavior, obstacle reflex controller, etc.), type
of robot, learning algorithm, and so on.

In interfaces/morf/sim/morf_controller_script.lua is the simulation script that is
responsible for mimicking the real-life MORF robot and setting up the simulation environment. The
script, therefore, creates ROS nodes, configures the simulation, and collects data that is sent to the
controller or machine learning script (e.g., for calculating the reward).

In neural_controllers/morf/sim/ is all the code for the controller running on MORF. This
includes the CPG and RBF networks as well as DIL and any configuration of the robot (e.g.,
behavior mode, sensory feedback, and joint limits).

Note that when you want to learn a new behavior is has to be implemented in both the machine
learning code and the controller code. This includes its reward function, behavior index, etc. A
good approach is to look at the implementation of an existing behavior (e.g., direction) and use it
as a template. Also, remember to suppress the other behaviors in

7

https://www.frontiersin.org/articles/10.3389/fncir.2021.743888/full
https://mathiasthor.github.io/assets/pdf/DIL.pdf
https://mathiasthor.github.io/assets/pdf/RAL_DIL.pdf
https://github.com/MathiasThor/CPG-RBFN-framework

neural_controllers/morf/sim/neutronController.cpp (by fixing the sensory input to the
behaviors to 0 → e.g.: postProcessedSensoryFeedback[behaviour_index][j] = 0;) such
that the other behaviors are not triggered during learning. Once a new behavior is learned, you can
take the .json file from either data/jobs/ or data/storage/ (if you did not stop the learning
before time) and place it in the data directory (probably you want to rename it at this point).
Assuming you have implemented the new behavior correctly, you need to specify the directory of
the new behavior in the readParameterSet function in neutronController.cpp. You may then
implement the new behavior in machine_learning/run_sim.sh and run the script to test the
behavior. It is not an easy process, but you will get the idea after some time with the code.

The Demo Controller
To show off the real MORF hexapod robot you may use the demo controller. It is simply using a
CPG without any adaptation modules. Instead is has hardcoded behaviors that can be triggered
with the XBOX controller. The commands are specified below:

To upload the demo controller to MORF see Update Controller.

Dynamixel servo setup
The Dynamixel servos are all connected to a U2D2 (see image below) that connects to the NUC pc
via USB. For testing a single servo it can also be connected to the U2D2 (and a power connector -
see also the guide by Cao) that is then connected to your personal PC.

8

Installing Dynamixel drivers
Set USB latency
Start by setting the USB latency on the NUC or your personal PC for fast communication. This can
be done by running the following command (assuming U2D2 is connected to USB0):

● sudo usermod -aG dialout $USER && echo 1 | sudo tee

/sys/bus/usb-serial/devices/ttyUSB0/latency_timer

You can check it by running the following:
● cat /sys/bus/usb-serial/devices/ttyUSB0/latency_timer

Install dependencies
The following dependencies need to be installed on the nuc or your personal PC.

1. Install ROS
2. Dynamixel SDK and ROS Controller

a. Run the following commands to install the remaining dependencies:
i. sudo apt-get install -y git cmake python-tempita

python-catkin-tools python-lxml xsltproc qt4-qmake libqt4-dev

libqscintilla2-dev

b. Run the following to install the Dynamixel Workbench used for communicating with
the servos through ROS:
i. sudo apt-get install ros-melodic-dynamixel-sdk

ii. mkdir ~/catkin_ws && cd ~/catkin_ws

iii. mkdir src && cd src

iv. git clone

https://github.com/MathiasThor/my_dynamixel_workbench.git

v. git clone

https://github.com/MathiasThor/dynamixel-workbench.git

9

vi. git clone

https://github.com/ROBOTIS-GIT/dynamixel-workbench-msgs.git

vii. git clone https://github.com/stonier/qt_ros

viii. cd dynamixel-workbench-msgs && git checkout

f91ae7dbd5d368a3121ca5bb901771b2e6471c01

ix. source /opt/ros/melodic/setup.bash

x. source /home/$USER/catkin_ws/devel/setup.sh

c. In order to add the above command to your .bashrc use the following command:
i. gedit ~/.bashrc

d. and add the following in the end of the file:
i. source /opt/ros/melodic/setup.bash

ii. source /home/$USER/catkin_ws/devel/setup.sh

e. Finally, compile the dynamixel ros controller:
i. cd ../.. && catkin_make

3. Setup automatic startup (not required)
a. see Services

Now you can connect to a single or multiple servos using the following commands respectively:
● roslaunch my_dynamixel_workbench_tutorial single_manager_4mil.launch

● roslaunch my_dynamixel_workbench_tutorial multiple_motor_test.launch

Note the above is for bautrate 4000000. If standard bautrate use:
● roslaunch my_dynamixel_workbench_tutorial single_manager.launch

With the single_manager you can specify the values of the motor. After you see “init success!”
hit enter. Now you can set all the parameters of the servo (see them all here:
https://emanual.robotis.com/docs/en/dxl/x/xm430-w350/). Alternatively, you may use the
dynamixel_wizard app for Windows
(https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_wizard2/)

Note if you get an “error opening serial port!” error, run the following:
● sudo chmod 777 /dev/ttyUSB0

Dynamixel servos default parameters:
The dynamixel servos used on MORF are XM430-W350-R. Detailed information about the servos
can be found here. Notice that the servo has a lot of changeable parameters. These are set as
follows per default:

10

https://emanual.robotis.com/docs/en/dxl/x/xm430-w350/
https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_wizard2/
https://emanual.robotis.com/docs/en/dxl/x/xm430-w350/

Note that the IDs are set accordingly to the below figure:

11

The parameters can be changed using the ROS single manager (as described above) or by
following the guide from Cao Danh Do (for windows users). Generally, the parameters will only be
changed once when building the robot or replacing servos. Note: Pay attention to the small dot on
the horn of the servos when replacing them!

Battery and charging
MORF requires 22.2V or a 6 cell lipo battery. Currently, it has a 3D printed battery holder for a
Zippy Compact 25C Series 5800 (see image below) - however, you can print a new holder for
another 6 celled battery.

MORF will automatically shut down when the lipo battery is drained. To charge the battery use a
lipo charger (i used the blue Hyperion - see image below) and set C=5800mAh and charge with
5.8A.

12

VIZ

3/28/24, 11:07 PM GOLLUM_private/tutorials/morfinterface.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/morfinterface.md 1/7

Arthicha update readme ba72688 · 8 months ago History

Arthicha / GOLLUM_private

Code Issues Pull requests Actions Projects Security Insights

GOLLUM_private / tutorials / morfinterface.md

123 lines (93 loc) · 4.18 KB

morfinterface functions as a low-level locomotion control of MORF, where you can create your own program on top of the
low-level locomotion control.

morfinterface: MORF locomotion interface

https://github.com/Arthicha
https://github.com/Arthicha/GOLLUM_private/commits?author=Arthicha
https://github.com/Arthicha/GOLLUM_private/commit/ba72688913b65cadbf19606ffa20364145dbbaaa
https://github.com/Arthicha/GOLLUM_private/commit/ba72688913b65cadbf19606ffa20364145dbbaaa
https://github.com/Arthicha/GOLLUM_private/commits/main/tutorials/morfinterface.md
https://github.com/
https://github.com/Arthicha
https://github.com/Arthicha/GOLLUM_private
https://github.com/issues
https://github.com/pulls
https://github.com/notifications
https://github.com/Arthicha/GOLLUM_private
https://github.com/Arthicha/GOLLUM_private/issues
https://github.com/Arthicha/GOLLUM_private/pulls
https://github.com/Arthicha/GOLLUM_private/actions
https://github.com/Arthicha/GOLLUM_private/projects
https://github.com/Arthicha/GOLLUM_private/security
https://github.com/Arthicha/GOLLUM_private/network/dependencies
https://github.com/Arthicha/GOLLUM_private/tree/main
https://github.com/Arthicha/GOLLUM_private/tree/main/tutorials
https://github.com/MathiasThor/MORF
https://github.com/Arthicha/GOLLUM_private/blob/main/figures/diagram_morfinterface.jpg
https://github.com/Arthicha/GOLLUM_private/blob/main/figures/diagram_morfinterface.jpg

3/28/24, 11:07 PM GOLLUM_private/tutorials/morfinterface.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/morfinterface.md 2/7

Requirement
Robot setup (do once to setup the system)
Computer setup (do once to setup the system)
MORF interface

a robot platform (in this case, MORF)
Ubuntu 18
ROS Melodic
python 2.7
realsence2 library

an interface platform
computer with ros

Contents

Requirements

https://github.com/MathiasThor/MORF
https://releases.ubuntu.com/18.04/
http://wiki.ros.org/melodic/Installation
http://wiki.ros.org/realsense2_camera

3/28/24, 11:07 PM GOLLUM_private/tutorials/morfinterface.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/morfinterface.md 3/7

You can skip this section if you use already setup MORF.

However, if you want to use your own robot, make sure that the robot has position control-based motors and odometry
feedback. The target joint position (in rad) is a std_msgs/Float32Multiarray ({j1,j2,j3,...}) published via
extcontroller/joint_position , while the odemetry ({x,y,z,roll,pitch,yaw,dx,dy,dz,droll,dpitch,dyaw}) is another

std_msgs/Float32Mulltiarray published via morf_hw/pose .

To setup the robot (based on MORF), unzip 'utils/morf-home'. Then, copy all folder provided at 'utils/morf-home/*' at the
robot home directory.

Complile the catkin workspace using:

Robot Setup

sudo scp -r gollum/utils/morf-home/* <robot_name>@<robot_ip>:~

https://github.com/Arthicha/GOLLUM_private/blob/main/figures/morf_hw.jpg
https://github.com/Arthicha/GOLLUM_private/blob/main/figures/morf_hw.jpg

3/28/24, 11:07 PM GOLLUM_private/tutorials/morfinterface.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/morfinterface.md 4/7

and

Finally, inserts the following lines to your '~/.bashrc' using sudo nano ~/.bashrc , following by applying the change with
source ~/.bashrc .

cd ~/catkin_ws
catkin build

cd ~/workspace\gorobots-mthor\projects\real\catkin_ws
catkin_make

setup host name
export ROS_MASTER_URI=http://192.168.0.1:11311
export ROS_IP=192.168.0.1

setup python path
#export PYTHONPATH='/usr/bin/python:/usr/bin/python3:/usr/lib/python:/usr/lib/python/dist-packages'
#export PYTHON3_DEFAULT='python3'

source ros and ros packages
source /opt/ros/melodic/setup.bash
source /home/morf-one/catkin_ws/devel/setup.bash --extend
source /home/morf-one/workspace/gorobots-mthor/projects/morfz/real/catkin_ws/devel/setup.bash --extend

define gollum command
alias morfinterface='roslaunch mollum_controller_real morf_interface.launch'
alias gollum='roslaunch mollum_controller_real mollum_controller.launch '

3/28/24, 11:07 PM GOLLUM_private/tutorials/morfinterface.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/morfinterface.md 5/7

inserts the following lines to your '~/.bashrc' using sudo nano ~/.bashrc , following by applying the change with source
~/.bashrc .

1. connect to the robot Wi-Fi hotspot, for example, morf-redpc.

2. connect to the robot terminal via secure shell. If the system operates properly, you will see the response on your
terminal.

3. to start the program, type morfinterface in the send it. The robot will respectiely start the realsence interface, motor
interface, and main program. After you receive the following response and the robot are in the home pose, you are
ready to control the robot.

4. use the following rostopic to control the robot.

To control the robot direction, publish the following joystick message:

Computer Setup

setup host name
export ROS_MASTER_URI=http://192.168.0.1:11311

MORF Interface

https://github.com/Arthicha/GOLLUM_private/blob/main/figures/morfinterface_ready.jpg
https://github.com/Arthicha/GOLLUM_private/blob/main/figures/morfinterface_ready.jpg

3/28/24, 11:07 PM GOLLUM_private/tutorials/morfinterface.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/morfinterface.md 6/7

To incrementally increase/decrease the locomotion freqeuncy for one step, publish the following message:

or

5. to end the program, kill the terminal by pressing CTRL+C. After a successful termination, you will receive the following
response.

rostopic pub -1 /extcontroller/joy geometry_msgs/Twist "linear:
 x: <your forward command>
 y: <your turning command>
 z: 0.0
angular:
 x: 0.0
 y: 0.0
 z: 0.0"

rostopic pub -1 /extcontroller/fup std_msgs/Bool "data: true"
rostopic pub -1 /extcontroller/fup std_msgs/Bool "data: false"

rostopic pub -1 /extcontroller/fdown std_msgs/Bool "data: true"
rostopic pub -1 /extcontroller/fdown std_msgs/Bool "data: false"

3/28/24, 11:07 PM GOLLUM_private/tutorials/morfinterface.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/morfinterface.md 7/7

https://github.com/Arthicha/GOLLUM_private/blob/main/figures/gollum1_end.jpg
https://github.com/Arthicha/GOLLUM_private/blob/main/figures/gollum1_end.jpg

3/28/24, 11:06 PM GOLLUM_private/tutorials/gollum1.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/gollum1.md 1/12

Arthicha update readme 77a3b6d · 8 months ago History

Arthicha / GOLLUM_private

Code Issues Pull requests Actions Projects Security Insights

GOLLUM_private / tutorials / gollum1.md

183 lines (135 loc) · 8.22 KB

GOLLUM-1 allows us to interactively train a robot (e.g., MORF) to achive locomotion learning under a single condition
(without incremental learning).

GOLLUM-1: fast online locomotion learning framework

https://github.com/Arthicha
https://github.com/Arthicha/GOLLUM_private/commits?author=Arthicha
https://github.com/Arthicha/GOLLUM_private/commit/77a3b6d12f77a860457cabb6ea3c80d0bd41c761
https://github.com/Arthicha/GOLLUM_private/commit/77a3b6d12f77a860457cabb6ea3c80d0bd41c761
https://github.com/Arthicha/GOLLUM_private/commits/main/tutorials/gollum1.md
https://github.com/
https://github.com/Arthicha
https://github.com/Arthicha/GOLLUM_private
https://github.com/issues
https://github.com/pulls
https://github.com/notifications
https://github.com/Arthicha/GOLLUM_private
https://github.com/Arthicha/GOLLUM_private/issues
https://github.com/Arthicha/GOLLUM_private/pulls
https://github.com/Arthicha/GOLLUM_private/actions
https://github.com/Arthicha/GOLLUM_private/projects
https://github.com/Arthicha/GOLLUM_private/security
https://github.com/Arthicha/GOLLUM_private/network/dependencies
https://github.com/Arthicha/GOLLUM_private/tree/main
https://github.com/Arthicha/GOLLUM_private/tree/main/tutorials
https://github.com/MathiasThor/MORF

3/28/24, 11:06 PM GOLLUM_private/tutorials/gollum1.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/gollum1.md 2/12

Requirement
Robot setup (do once to setup the system)
ROS interface
Smart phone interface

a robot platform (in this case, MORF)
Ubuntu 18
ROS Melodic

Contents

Requirements

https://www.youtube.com/embed/DLzj_atgSFQ
https://www.youtube.com/embed/DLzj_atgSFQ
https://www.youtube.com/embed/DLzj_atgSFQ
https://github.com/MathiasThor/MORF
https://releases.ubuntu.com/18.04/
http://wiki.ros.org/melodic/Installation

3/28/24, 11:06 PM GOLLUM_private/tutorials/gollum1.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/gollum1.md 3/12

python 2.7
realsence2 library

an interface platform
android smart phone for smart phone interface (recommented for simple use)
computer with secure shell and ros interface (technical use and debugging)

You can skip this section if you use already setup MORF.

However, if you want to use your own robot, make sure that the robot has position control-based motors and odometry
feedback. The target joint position (in rad) is a std_msgs/Float32Multiarray ({j1,j2,j3,...}) published via
extcontroller/joint_position , while the odemetry ({x,y,z,roll,pitch,yaw,dx,dy,dz,droll,dpitch,dyaw}) is another

std_msgs/Float32Mulltiarray published via morf_hw/pose .

Robot Setup

http://wiki.ros.org/realsense2_camera
https://github.com/Arthicha/GOLLUM_private/blob/main/figures/morf_hw.jpg
https://github.com/Arthicha/GOLLUM_private/blob/main/figures/morf_hw.jpg

3/28/24, 11:06 PM GOLLUM_private/tutorials/gollum1.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/gollum1.md 4/12

To setup the robot (based on MORF), unzip 'utils/morf-home'. Then, copy all folder provided at 'utils/morf-home/*' at the
robot home directory.

Complile the catkin workspace using:

and

Finally, inserts the following lines to your '~/.bashrc' using sudo nano ~/.bashrc , following by applying the change with
source ~/.bashrc .

sudo scp -r gollum/utils/morf-home/* <robot_name>@<robot_ip>:~

cd ~/catkin_ws
catkin build

cd ~/workspace\gorobots-mthor\projects\real\catkin_ws
catkin_make

setup host name
export ROS_MASTER_URI=http://192.168.0.1:11311
export ROS_IP=192.168.0.1

setup python path
#export PYTHONPATH='/usr/bin/python:/usr/bin/python3:/usr/lib/python:/usr/lib/python/dist-packages'
#export PYTHON3_DEFAULT='python3'

source ros and ros packages
source /opt/ros/melodic/setup.bash
source /home/morf-one/catkin_ws/devel/setup.bash --extend
source /home/morf-one/workspace/gorobots-mthor/projects/morfz/real/catkin_ws/devel/setup.bash --extend

3/28/24, 11:06 PM GOLLUM_private/tutorials/gollum1.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/gollum1.md 5/12

1. connect to the robot Wi-Fi hotspot, for example, morf-redpc.

2. connect to the robot terminal via secure shell. If the system operates properly, you will see the response on your
terminal.

3. to start the program, type gollum in the send it. The robot will respectiely start the realsence interface, motor interface,
and main program. After you receive the following response and the robot are in the home pose, you are ready to
control the robot.

4. use the following rostopic to control the robot.

Type Topic name Message type Function

ROS
parameter

/extcontroller/pause Bool pause/enable locomotion learning

define gollum command
alias morfinterface='roslaunch mollum_controller_real morf_interface.launch'
alias gollum='roslaunch mollum_controller_real mollum_controller.launch '

ROS Interface

https://github.com/Arthicha/GOLLUM_private/blob/main/figures/gollum1_ready.jpg
https://github.com/Arthicha/GOLLUM_private/blob/main/figures/gollum1_ready.jpg

3/28/24, 11:06 PM GOLLUM_private/tutorials/gollum1.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/gollum1.md 6/12

Type Topic name Message type Function

ROS topic /extcontroller/joy geometry_msgs/Twist
(only in pause mode) manual control (forward:
Linear/X, turning: Linear/Y)

ROS topic /extcontroller/fdown std_msgs/Bool (only in pause mode) decrease gait freqeuncy

ROS topic /extcontroller/fup std_msgs/Bool (only in pause mode) increase gait freqeuncy

ROS topic /extcontroller/save std_msgs/Bool
(only in pause mode) save the tempolary learned
locomotion

ROS topic /extcontroller/load std_msgs/Bool
(only in pause mode) load the tempolary learned
locomotion

ROS topic /extcontroller/default std_msgs/Bool (only in pause mode) load the default locomotion

Note that you could use rosparam set <name> <value> to set a ROS parameter and use rostopic pub -1 <name> <type>
<value> to publish a ROS message.

5. to end the program, kill the terminal by pressing CTRL+C. After a successful termination, you will receive the following
response.

3/28/24, 11:06 PM GOLLUM_private/tutorials/gollum1.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/gollum1.md 7/12

1. download and install ROS-Mobile application from Play Store or the apk file

Smart Phone Interface

Setup

https://github.com/Arthicha/GOLLUM_private/blob/main/figures/gollum1_end.jpg
https://github.com/Arthicha/GOLLUM_private/blob/main/figures/gollum1_end.jpg
https://github.com/Arthicha/GOLLUM_private/blob/main/utils/ros-mobile

3/28/24, 11:06 PM GOLLUM_private/tutorials/gollum1.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/gollum1.md 8/12

2. setup the "MASTER" tab as follows:

Variable Value

Master URL 192.168.0.1

Master port 11311

Note that "Network SSID" and "Device IP address" will be connected automatically when connecting with the robot's Wi-
Fi hotspot.

3. setup the "VIZ" tab by addting the following widgets to "DETAILS" tab:

Widgets
type

Name
Viz
location

Topic name Message type Paramete

Battery Battery (7,13,1,2) battery sensor_msgs/BatteryState

https://github.com/Arthicha/GOLLUM_private/blob/main/figures/setup_mobile_interface.png
https://github.com/Arthicha/GOLLUM_private/blob/main/figures/setup_mobile_interface.png

3/28/24, 11:06 PM GOLLUM_private/tutorials/gollum1.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/gollum1.md 9/12

Widgets
type

Name
Viz
location

Topic name Message type Paramete

Logger
robot
status

(0,7,8,1) log std_msgs/String

Button
decrease
freqeuncy

(0,4,1,1) /extcontroller/fdown std_msgs/Bool --

Button
increasse
freqeuncy

(2,4,1,1) /extcontroller/fup std_msgs/Bool +

Button
load
default

(6,6,2,1) /extcontroller/default std_msgs/Bool default

Button load new (3,6,2,1) /extcontroller/load std_msgs/Bool load

Button save new (0,6,2,1) /extcontroller/save std_msgs/Bool

Button pause (0,1,3,2) /extcontroller/pause std_msgs/Bool pause

Joystick Joystick (3,0,5,5) /extcontroller/joy geometry_msgs/Twist

Linear, X,
0, -1,
Linear, Y,
-1, 0, 1

Camera fisheye (0,8,8,7) /camera/fisheye1/image_compressed sensor_msgs/Image

Label title (0,14,3,1)
ros
controller

4. setup the "SSH" tab as follows:

3/28/24, 11:06 PM GOLLUM_private/tutorials/gollum1.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/gollum1.md 10/12

Variable Value

IP Address 192.168.0.1

Port 22

Username your robot username (e.g., morf-one)

Password your robot passward (e.g., morf1234)

1. connect to the robot Wi-Fi hotspot, for example, morf-redpc.

2. on "SSH" tab, press "CONNECT" button to connect to the robot terminal via secure shell. If the system operates properly,
the "CONNECT" button will change to "DISCONNECT".

3. to start the program, type gollum in the "Terminal Input" and send it. The robot will respectiely start the realsence
interface, motor interface, and main program. After you receive the following response and the robot are in the home
pose, you are ready to control the robot.

4. on "MASTER" tab, press "CONNECT" button. After that, the status will change from "RED: Disconnected" to "GREEN:
Connected".

Usage

https://github.com/Arthicha/GOLLUM_private/blob/main/figures/gollum1_ready.jpg
https://github.com/Arthicha/GOLLUM_private/blob/main/figures/gollum1_ready.jpg

3/28/24, 11:06 PM GOLLUM_private/tutorials/gollum1.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/gollum1.md 11/12

5. use "VIZ" tab to control the robot.

Button Function

pause pause/enable locomotion learning

joystick (only in pause mode) manual control

-- (only in pause mode) decrease gait freqeuncy

+ (only in pause mode) increase gait freqeuncy

save (only in pause mode) save the tempolary learned locomotion

load (only in pause mode) load the tempolary learned locomotion

dafault (only in pause mode) load the default locomotion

Note that the default locomotion was trained for approximately 20-30 mins, and it cannot be overwrited. Also, you can load
the default locomotion, increase walking freqeuncy, and continue training from the default locomotion with high walking
freqeuncy after pressing pause again (enable locomotion learning).

6. to end the program, kill the terminal by press "x" button. After a successful termination, you will receive the following
response.

3/28/24, 11:06 PM GOLLUM_private/tutorials/gollum1.md at main · Arthicha/GOLLUM_private

https://github.com/Arthicha/GOLLUM_private/blob/main/tutorials/gollum1.md 12/12

https://github.com/Arthicha/GOLLUM_private/blob/main/figures/gollum1_end.jpg
https://github.com/Arthicha/GOLLUM_private/blob/main/figures/gollum1_end.jpg

