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Abstract—Due to demographic change, health and elderly
care systems are facing a shortage of qualified caregivers.
This issue can be addressed by introducing welfare robots into
people’s homes, hospitals, and care institutions. To provide useful
support, such robots must adapt to individual users and smoothly
interact with them. From this perspective, we present advances
on the development of proactive control for online individual
user adaptation in a welfare robot guidance scenario, with the
integration of three main modules: navigation control, visual
human detection, and temporal error correlation-based neural
learning. The proposed control approach can drive a mobile robot
to autonomously navigate in relevant indoor environments. At the
same time, it can predict human walking speed based on visual
information without prior knowledge of personality and prefer-
ences (i.e., walking speed). The robot then uses this prediction
to continuously adapt its speed to individual users in a proactive
online manner. We validate the performance of the proposed
proactive robot control in different real-world environments with
various users, including an elderly resident of a Danish elderly
care center. The results show that the robot successfully and
smoothly guided various users of different ages and average
walking speeds (e.g., 0.2 m/s, 0.7 m/s, 1.1 m/s) to target locations
over distances of 25-60 m. All in all, this study captures a wide
range of research from robot control technology development
to technological validity in a relevant environment and system
prototype demonstration in an operational environment (i.e., an
elderly care center).

Index Terms—Service mobile robot, Neural control, Adaptive
behavior, Welfare robot, Guide robot, Social robot, Human-robot
interaction.

I. INTRODUCTION

Demographic change constitutes a key challenge for health
and elderly care systems in many societies since forecasts
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Fig. 1. Example of the SMOOTH robot with proactive control for online
individual user adaptation in a guidance scenario. The robot navigates and
guides the user in the relevant environment (e.g., inside a build at the
University of Southern Denmark (SDU)). The proactive robot system has
been successfully demonstrated to support elderly people in an operational
environment (i.e., the Ølby elderly care center in Køge, Denmark).

show that the population aged above 64 will grow by more
than 70% in most countries [1]. A shortage of qualified
caregivers is becoming a pressing issue in care facilities, and
this deficit is expected to increase further with the imminent
demographic shift. Welfare robots providing services in the
health and elderly care sector are expected to be able to
alleviate this shortage. They can help staff in their daily work
while allowing the elderly with physical or mental conditions
to remain independent for longer.

Our recent SMOOTH project1 deals with the problem of
developing proactive and responsive robot behavior control to
achieve smooth and fluent human-robot interaction in elderly
care centers/nursing homes. We have identified elements of
its main functionality to enable the robot to provide support
to end-users (caregivers and elderly people) in elderly care
institutions, leading to three key use cases. The use cases
entail guiding the elderly to different areas of the elderly care
facility (use case 1, see Fig. 1 for the simulated use case),
transporting laundry and garbage (use case 2), and serving
beverages to increase the liquid intake of the elderly (use case
3). Some of these use cases involve elements of individual

1SMOOTH: Seamless huMan-robot interactiOn fOr THe support of elderly
people, http://smooth-robot.dk/
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user adaptation to achieve smooth human-robot interaction
and have various relevant applications outside elderly care
facilities. For example, robots could serve drinks and snacks
at social events as well as guide people to navigate around
hospitals, airports, museums, conference venues, hotels, etc.

Robotic technology for healthcare has undergone consider-
able development in the last decades [1], [2], [3], but there are
many limitations to the deployment of robotic solutions in this
sector such as the high cost, safety, and, arguably the most
important aspect, poor acceptance by the elder population.
Some key elements to improve acceptance of healthcare robots
are their functionality and real-time adaptability for individual
users in human-robot interaction [4]. This paper focuses on the
aspect of robot adaptability to individual users of social wel-
fare robots when guiding people in an elderly care center or a
nursing home. Guide robots are typically driven by traditional
control strategies [5], [6], [7], [8], [9], [10] which are not well
suited to environments consisting of people with highly diverse
mobility capabilities since existing methods lack proactivity
and continuous online robot (motion/speed) adaptation to
individual users. They are typically pre-programmed with
specific (navigation) behaviors. Consequently, they often fail
to effectively adapt their behavior on the fly to handle the
changing needs (walking at different speeds) of their users
(see also the Related Work section).

This paper presents our advances on the development of a
proactive control architecture to implement efficient guiding
of people (i.e., our first use case, Fig. 1) by our SMOOTH
robot (Fig. 2). The proactive control for this scenario with
robot speed adaptation consists of three main modules: nav-
igation control, visual human detection, and temporal error
correlation-based neural learning. The robot predicts human
speed based on visual information and uses this prediction
to continuously and proactively adapt its speed to individual
users on the fly. The robot can basically learn the speed control
parameter (speed gain) online during the guiding process.
Therefore, it can autonomously and smoothly guide2 the user
to a target location without prior knowledge of personality
and preferences (i.e., walking speed in this study) and without
preliminary (offline) training. This novel approach is different
from others which typically require this kind of prior knowl-
edge [11], [12] and/or a prior training/learning process with
a number of trials3 (e.g., reinforcement learning [13], [14])
(see the Related Work section). The main contributions of our
study are threefold.

• Firstly, we propose a proactive robot control architec-
ture, integrating three main modules for robot navigation
control, visual human detection, and fast online robot
learning.

• Secondly, for fast online robot learning, we propose tem-
poral error correlation-based neural learning to smoothly
guide with individual user speed adaptation in a continu-

2The guiding smoothness is considered by the continuous motion of the
robot with a speed matching that of human walking to keep an appropriate
distance from its user.

3Such a process is typically performed in simulation first, due to the number
of trials [13], depending on the learning algorithm and control complexity. In
contrast, our method with fast online learning can directly apply to a real robot.
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Fig. 2. SMOOTH robot and simulation environment. (a) Real SMOOTH robot
with a multitude of sensory systems (described below). Here the four main
sensors used in this study are depicted: Depth camera, laser scanner, wheel
encoders, and inertial measurement unit. The camera is for human detection
and used in temporal error correlation-based neural learning for robot speed
adaptation. The other sensors are for navigation control. The update frequency
of the robot, limited by the camera system, is approx. 10 fps (Hz) which is
sufficient for our use case. This is due to the fact that the average target-human
walking speed for robot guiding here is usually slow. It is between 0.2 m/s
(elderly people) and 1.1 m/s (young people). (b) Simulation of the SMOOTH
robot and a target distance with a 25% acceptable deviation range between
the robot and the follower (i.e., 1 ± 0.25 m). The distance with a deviation
range was also suggested by caregivers at an elderly care center as a safety
factor for guiding elderly people to provide sufficient space when guiding an
elderly person with a wheeled walker. It is also considered as “far phase”
personal distance of the proxemics model [15]. pet represents the Euclidean
distance between the human and robot with respect to the robot position rt.

ous manner without prior knowledge of the environment
and human models.

• Finally, we validate the performance of the proposed
proactive robot control for a welfare robot guidance sce-
nario in different real-world environments with different
users, including a resident of an elderly care center in
Køge, Denmark (i.e., our end user).

Taken together, this study covers a wide range of research
from robot control technology development to technological
validity in a relevant environment (inside a building) and a
system prototype demonstration in an operational environment
(Danish elderly care center). The rest of the paper is structured
as follows. Section II presents a review of related work in
healthcare robot adaptation for individual users. Section III
presents the SMOOTH robot system including its hardware,
simulation, and proactive control for individual user adaptation
towards smooth human-robot interaction. The SMOOTH robot
hardware has been developed and used as an experimental
platform for this SMOOTH project. The proactive control
consists of three modules for 1) navigation control, 2) visual
human detection, and 3) temporal error correlation-based neu-
ral learning. Section IV presents the results obtained from our
experiments in simulation and the real world, together with a
final test performed at a Danish elderly care center with an
elderly resident. Finally, section V presents a discussion and
conclusion on the main results of the paper together with the
future scientific steps proposed for the project.

II. RELATED WORK

Healthcare robotics is a general term which includes, among
others, rehabilitation robotics, companion robots, and social
robots with applications for elderly care [3], [16], [17]. Of
these, social healthcare robots have the potential to deliver a
higher impact on society since they can support an independent



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 3

life for the elder population as well as relieving pressure on
caregivers [18]. To enhance user experience and acceptance,
healthcare robots and, in general, socially assistive robots, are
nowadays witnessing a shift toward including adaptation of
their behavior to individual users through various approaches
including user profiling in cognitive architectures [19], build-
ing relations with the user [10] or data-driven models [20],
and adaptive reinforcement learning [13].

Many of the technological and methodological needs of ser-
vice and healthcare robotics have already been addressed, yet
some environments, like hospitals, require special techniques,
such as for localization purposes [21], [22], given their typical
physical structure with long corridors and few landmarks. Yet,
the need to adapt the behaviour of healthcare robots became
evident in one of the pioneering robots in the field, robot Pearl
[23]. Pearl was developed as a mobile platform to support the
elderly at home and in nursing homes. Its main purpose was
to provide the elderly with reminders of their daily activities,
successfully adapting the way of providing the reminders to
avoid annoyance to the user. Another functionality of Pearl
was to help the elderly navigate their environments, yet, in
this case, there was no adaptation of the robot speed since it
was pre-programmed with a constant speed, making it too fast
or too slow depending on the user. Another significant work in
assistive robots for the elderly is Care-O-bot [24], which can
be used as a walking aid, and to execute fetch and carry tasks.
The walking aid mode can be seen as a rollator, where the
robot is physically controlled by the user, but it can also plan
collision free paths which can be modified by the user through
the application of pressure on the handles, solving the problem
of changing the speed through a shared control mechanism.
The work in [11] presents a guide robot which adheres to
proxemics rules, keeping an appropriate distance from the
users, and adapting its behavior according to whether or not
the human is engaged in the guiding process. In this work, the
robot adapts its speed using a proportionality mechanism with
the predefined proxemics rules. It is triggered by the proximity
to the human, which can be behind or on the side of the
guiding robot. Adaptation to human body language has also
been studied for assistive robots [25]. This work combines a
quadrupole-based navigation planner with a slippage controller
to develop a robot that can accurately perform navigation tasks
commanded by the user through gestures.

Adaptation in healthcare and assistive robots has become
an important research topic, and focuses on other aspects
of interaction between robots and users, apart from guiding.
However, these techniques typically require user profiling;
gathering information about the personality and preferences
of the user to inform and shape the robot behavior [12].
For instance, the work in [14] investigates the effect of
matching the personality of a rehabilitation robot and the user.
Furthermore, this work uses reinforcement learning to adapt
certain parameters of robot behavior (movement, coaching
messages, and proximity) to maximize the performance of
the user in the rehabilitation task. A planning-based algorithm
for user adaptation in the context of assistance for dressing
is presented in [26]. Starting with some default settings, and
assuming the robot is endowed with the relevant behaviors

to execute shoe dressing actions, this algorithm can adapt the
speed of such actions and the level of information provided to
the user based on user feedback.

While user profiling and the personalization of robot be-
havior clearly has its merits, it is not suited to tasks where
adaptation must be fast and the ability to deal with unknown
individual users is required. On the other hand, user adaptation
without profiling relies on fixed reactive control, modifica-
tion of planners and shared control mechanisms which have
limitations in terms of adaptability. Typically, reactive control
with fixed/predefined control parameters [23], [27] can stably
and smoothly adapt robot behavior (e.g., robot speed) to cope
with a small range of human behavior variations (e.g., a small
range of different walking speeds). Most works that rely on
changes to planning mechanisms for guidance focus on social
interaction aspects [28], [29], [30] and omit adaptation to the
user speed. One notable exception is the work presented in
[20] where the authors propose a modification of the cost of
planning algorithms which allows a robot to guide a person
with a closer average distance regardless of the person speed.
Although their system adapts to several human speeds the
adaptation term in the cost is data-driven, i.e., learnt from
examples, and therefore requires trajectory examples which
might not match the human speed. Alternatively, a standard
stop-and-wait behavior strategy is employed [5], [31] while
shared control [32], [33], [34] requires most user involvement
in the robot movement (i.e., a tightly coupled human-robot
system [35]). Thus, these approaches are not appropriate in
our scenario here for the following reasons: 1) it has to deal
with a wide range of walking speeds (e.g., very slow 0.2 m/s
to fast 1.1 m/s), and 2) it requires less human involvement or
less human intention (loosely coupled) for robot adaptation.
This work presents a proactive control architecture that avoids
profiling and data-driven adaptation (i.e., it adapts faster with-
out user data), does not rely on predefined control parameters
(i.e., parameters adapt to specific users), nor on tight human-
robot coupling, all of which is achieved by integrating online
learning for adapting quickly and flexibly to individual users
with various walking speeds in healthcare applications.

III. THE SMOOTH ROBOT SYSTEM

In this section, we describe the SMOOTH robot system.
First, the robot hardware and its 3D physical simulation are
provided, followed by the proactive robot control which is the
main contribution of this study.

A. Robot Hardware and Simulation

1) SMOOTH Robot Hardware: We developed a robotic
platform (called SMOOTH) with the ability to address differ-
ent common use cases in elderly care centers (Fig. 2(a)). The
design and development of the robot by the consortium of the
SMOOTH project consists of a mobile base, torso, and head.
The robot measures 0.8m (length) x 0.6m (width) x 1.06m
(height) (Fig. 2(b)). The mobile base is a three-wheeled robot
platform with two actuated wheels at the back and a caster
wheel at the front. The base also contains a safety laser scanner
(Hokuyo UAM-05LP-T301) covering 270◦ at the front, wheel
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encoders, and an inertial measurement unit (IMU, MPU-
9150 9-axis with integrated gyro, accelerometer, and compass
sensors) for autonomous navigation purposes. The torso of the
robot contains a mini PC (Intel R©NUC, 2.4 GHz Intel Core
i3-7100U Dual-Core), two depth cameras (Intel R©RealSense
D435, one each at the front and back), an array of microphones
and speakers for speech synthesis and recognition. The head
includes two touch screens for user interface and simulated
eyes4, and four depth cameras (Intel R©RealSense D435, one
each at the front, back, and on either side) for object/human
recognition. In this study, only the back camera is used
for human speed prediction and robot speed adaptation. The
hardware system uses the Robot Operating System (ROS)
as a bridge for communicating, operating, and synchronizing
software packages between the different computing nodes of
the system. The entire SMOOTH robot system including the
mini PC for implementing our proactive robot control (Fig. 3)
consumes approx. 120 watts, which is supplied by a 24V, 40Ah
lithium iron phosphate battery (LiFePO4). The average run
time on a fully charged battery is 8 hours. Further details of
the SMOOTH robot can be found in [39].

2) SMOOTH Robot Simulation: We simulate the SMOOTH
robot using the 3D physical simulation framework (called
V-REP, currently integrated into the new robot simulator
CoppeliaSim5) with the Bullet physics library. The simulation
environment is used for developing our proactive control and
preliminary test before transferring it to the real robot. The
robot model (Fig. 2(b)) is qualitatively consistent with the real
one (Fig. 2(a)) in the aspects of geometry, mass distribution,
motor torque/speed, and sensors. The CAD model of the
robot is imported into the simulation scene and used as the
dynamic model for simulation experiments. The robot wheel
motors are simulated by torque/force mode joints and the depth
camera is simulated by a vision sensor with RGB and depth
information. Here, we add Gaussian-distributed noise with a
standard deviation of, e.g., 5% to sensor signals. The model
of a walking person is provided by the simulator (i.e., Bill on
path). The model aims to resemble natural human walking
behavior with the potential to vary instantaneous walking
speed. In our experiments (described below), both the robot
and person are assigned to predefined paths.

B. Proactive Robot Control

To achieve individual user adaptation in a robot guidance
scenario, we propose proactive robot control (Fig. 3).

It consists of three main modules: navigation control, visual
human detection, and temporal error correlation-based neural
learning. The navigation control module is for autonomously
navigating and guiding the user to a given location. When
navigating the environment, if the robot detects an obstacle
in its path, it will consider obstacle avoidance as the highest

4 The simulated eyes enable people to establish eye contact [36]. The design
of the eyes in round shape follows human-robot interaction principles [37]
aiming for acceptance and trust [38]. Although the eye contact has not been
used during guiding in the study, we have recently explored the use of eye
contact for trust, friendly human-robot interaction in other tasks, like serving
drink.

5http://www.coppeliarobotics.com/
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Fig. 3. Proactive control architecture for online individual user adaptation.
The proactive control operates in a so-called embodied sensorimotor loop
for smooth robot guiding behavior generation and smooth human-robot
interaction. Note that we call our approach proactive control since its neural
learning mechanism correlates two kinds of input signals (predictive and
reflex) with different time steps (or scales), finally using the predictive signal
to proactively control or modulate the robot speed.

priority. As such, the robot will automatically and gradually
decrease its speed to avoid the obstacle during guiding.
The visual human detection module is for detecting human
movement, translating it into the distance between the human
and robot, and thereby predicting human walking speed. The
neural learning module is for online learning to adapt the
robot speed to individual human walking speed to maintain the
distance during guiding (i.e., 1 m with an acceptable deviation
range of 25%). This online learning approach does not require
human or environmental models or prior knowledge of human
walking speed preference. Instead, it relies only on visual
human detection to adapt the robot speed. Note that, among
these main modules, the visual human detection is the most
computationally expensive part (highest control effort) while
the neural learning has the cheapest computational cost (lowest
control effort). The details of each module are described
below. In section IV, we experimentally show the stability
and robustness of the closed-loop proactive control system
under different conditions (including different light levels and
dynamic environments (see also Supplementary Figures 1-
3)), which relies on the robustness of the human detection
module, the stability of the navigation control module, and
the stability results of the neural learning mechanism [40] (see
also Supplementary Figure 4).

1) Navigation Control: We developed navigation control
to allow the SMOOTH robot to navigate in an indoor envi-
ronment by moving to a given target location while avoiding
obstacles in its path. It is based on a state-of-the-art mobile
robot navigation system (i.e., the ROS navigation stack [41])
that basically transforms odometry and sensor information into
safe velocity commands for a given robotic platform. For
the purposes of this study, we have extended the navigation
system using two main components: the Waypoint server to
define a target in a practical way and the command adaptor
for robot speed adaptation (described below). Figure 4 shows
the architecture of our ROS-based navigation control.

The navigation control consists of two separate function-
alities: self-localization and velocity control in the respec-
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Fig. 4. Navigation control architecture for autonomous in-door robot naviga-
tion, obstacle avoidance, and human guidance with a human-centered adaptive
strategy. Sensory feedback is shown by green squares, packages from ROS
by blue squares, and additional components by red squares. The outputs
(right vr,navi and left vl,navi motor speeds) from the navigation control for
goal achievement are further modulated by the output of the neural learning
through the command adaptor for robot speed adaptation with respect to
human walking speed. Additionally, visual human detection will stop the
robot motion (i.e., setting vr,l,navi to 0.0 through the command adaptor)
if the human disappears during guiding. The final right vr and left vl motor
speeds are sent to the robot.

tive amcl and move base packages. These processes use the
sensory data of the robot (laser scanner and wheel encoders
(Fig. 2(a))) to encode the actual environmental information
into a probabilistic pose, represented by an internal map.
The self-localization, amcl, is based on the probabilistic
Monte Carlo localization approach [42]. The velocity control,
move base, uses information from the environment with a
previously created Map and sensory information from the laser
scanner in the form of a Costmap to generate a series of
velocity commands through the interaction between the global
planner and local planner. The global planner uses the Dijkstra
algorithm [43] to output the shortest route in the internal map
given an initial position and a goal position. The local planner
uses the Dynamic Window Approach (DWA) algorithm [44] to
generate an optimal combination of feasible and safe velocity
commands in the instantaneous position of the robot within
constraints of the robot and environment. The laser scanner
sensor receives proximity information to update obstacles in
the environment into the Costmap, and the local planner then
uses this updated layout to determine the trajectory of the
robot. Finally, the local planner selects the optimal velocity
commands of the right vr,navi and left vl,navi motor speeds
to drive the robot from the current position to a position close
to the global planner trajectory while avoiding obstacles in
its environment (Fig. 5). In this study, the anticipation of an
unexpected human motion in an obstacle avoidance situation is
not integrated in the local planner. However, as a safety factor
during the guiding task, we define the target distance between
the human and robot to 1 ± 0.25 m, limit the robot maximum
speed to a low value of 1.5 m/s, and configure the robot to only
drive forward or stop (positive or zero speed command) where
driving backward is allowed only in a certain condition with
manual control. This minimal approach will allow the human

to react (e.g., slow down walking speed or stop) in time during
obstacle avoidance. While the current navigation control can
allow the robot to avoid obstacles in both static environments
(Fig. 5) and dynamic environments (Supplementary Figures 1-
3), dealing with multiple dynamic obstacles will require more
advanced motion planning [45], [46] and go beyond the scope
of this study.

Obstacle 
avoidance

Starting point

Target 
point

Starting point

Target point

Obstacle 
avoidance

(a) (b)

Fig. 5. Examples of autonomous navigation with obstacle avoidance. (a),
(b) The robot was set to autonomously navigate from two different locations
inside the SDU building. The distances traveled were approximately 30 and
60 meters, respectively. The robot successfully navigated 100% over five runs
in each case.

For practicality, we developed and integrated the Waypoint
server node (red box in Fig. 4) into the navigation stack. The
user can store the pose of the robot in the created map with an
ID name. Afterward, the user can select the different locations
in the map defined by its ID (for instance, ID “dining room”,
ID “living room”, or ID “laundry room”) as target locations.
This utility allows the user to simply define a target location
for the robot in an elderly care center, e.g., the dining room.

For online robot speed adaptation to match the walking
speed of an individual user (including elderly subjects) during
autonomous navigation and guidance, we developed the com-
mand adaptor (red box in Fig. 4). This piece of software uses
the output of the neural learning (described below) to modulate
the motor speeds vr,l,navi generated by the navigation control.
As a result, the robot autonomously navigates and adapts to
the pace of the user, avoiding obstacles as predicted. The
system also considers human detection as a priority task. If
the user stops and its position is outside a certain range, the
robot starts to call the user to encourage him/her to continue
walking toward the goal (not investigated here).

2) Visual Human Detection: The human detection system
is tasked with to estimating the 3D position pt of each
human in the field of the camera’s view. This is done by first
detecting the 2D pose of each human in the RGB image using
CenterNet [47] in the multi-pose configuration. CenterNet is
used here since it is a state-of-the-art method for real-time
object detection. Such a detected pose can be seen in Fig. 6.
The next step is to use the available depth information to
project the detected joint locations in 3D, resulting in a 3D
skeletal representation for each detected person. From this 3D
representation, pt and other information such as torso direction
can be extracted. One way to estimate pt would be to find the
average or median joint position in the skeleton. However,
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such an approach might result in instability since joints along
extremities are not always found by CenterNet, leading to large
jumps in the average measurements from frame to frame. To
ensure robustness, only the shoulder joints are used. A torso
point is sampled halfway between the image coordinates of
the two shoulder joints, and projected to 3D. This 3D torso
center is then set as pt. The torso direction is also extracted
by finding the vector orthogonal to the vector between two
shoulder joints, which is also parallel to the ground plane.

Fig. 6. Visual human detection using human pose estimation CNN. First
the pose of each person in the frame is found using the CNN. The detected
shoulder joints are then projected to 3D using the available depth information.
These 3D locations are then used to find the center torso position and
orientation, by finding the vector orthogonal to the vector between the shoulder
joints, parallel to the ground. The detected 3D human position pt is shown on
the map, relative to the robot position rt. After obtaining pt, it is transmitted
to the temporal error correlation-based neural learning circuit described in the
following section.

We validated the robustness of the human detection sys-
tem by testing it in three different light conditions: bright
(≈ 315 lux), medium (≈ 185 lux), and dark (≈ 15 lux). The
experiment was conducted in a room with ceiling lights and
big windows at midday. For the bright condition, the ceiling
lights were on and the curtains were up. For the medium
condition, the curtains were down but the ceiling light was on.
For the dark condition, the curtains were down and the ceiling
light turned off. The result shows that the detection rate of the
human detection system is 100% in the three different light
conditions. The detection rate is defined as the percentage of
the sample size (here, 190) where the detector outputs a correct
bounding box around the person and no other bounding box.

While the human detection system can detect each person
in a frame, it does not recognize which detection correlates
to the person being guided. To deal with this issue, we apply
the face recognition model FaceNet [48]. FaceNet is a CNN,
trained to project cropped face images into a 128-dimensional
vector space encoding. In this space, face encodings of the
same person are clustered together, while the encodings from
different people are spaced out. A person can thereby be recog-
nized by comparing the encoding to clusters of encodings from
known people. At the start of the guiding process, face images
of the person being guided are encoded, by cropping them

using the detected facial keypoints from CenterNet. Hereafter,
the face of each detected person is encoded and compared
to the encodings of the guided person using a threshold of
the L2-norm. Examples of human face recognition can be
seen at Supplementary Figure 5. Note that since the visual
human detection used is based on the standard CenterNet and
FaceNet, it only supports proactive control and is not a key
contribution to this study. We refer to [47], [48] for further
evaluation. Although the described vision system can provide
several features in this case (human detection, human-robot
distance estimation, and human face recognition), it is still
unable to identify human beings. To accomplish this, we can
enhance our robot sensing system with additional sensors such
as a thermal camera for sensing human body temperature [49],
[50] and an ultra-wideband (UWB) radar for sensing human
vital sign signals (e.g., respiration and heartbeat) [51], [52].

3) Temporal Error Correlation-based Neural Learning:
The processed visual information described in the previous
section is fed into the temporal error correlation-based neural
learning circuit (Fig. 7) to modify a plastic synapse (compara-
ble to speed gain control) during learning. The learning goal
in this study is to enable the robot to quickly learn to adapt
its moving speed to match human walking speed in an online
manner. In this way, the robot can perform simplified smooth
human-robot interaction in the guidance scenario. To achieve
this, we propose here for the first time, a temporal error
correlation-based neural (TEC) learning rule, derived from a
combination of input correlation (ICO) learning [40] and error-
based (Widrow-Hoff) learning [53]. It basically correlates two
temporal input signals at different time steps (Fig. 7). Inspired
by biological motor learning [54], [55], [56], [57], in this study
we use temporal prediction errors (et, et−1) as our two-time
step input signals. The first time-step input signal is the current
prediction error et. It is defined as et = pet−pi, where pet is the
Euclidean distance between the human and robot (calculated
from the 3D human position pt, described above), with pi
being the ideal target distance (e.g., 1.0 m, Fig. 2(b)). The
second time-step input signal is the previous prediction error
et−1. The learning circuit uses the two input information to
predict human walking speed and generates a proper output F
to modulate robot speed commands, originally generated by
the navigation control (Fig. 4).

According to the ICO learning, the connection wt of a
predictive signal (i.e., here the current prediction error, et)
is initially given with zero strength. In this situation, the robot
moving speed will be modulated only by a constant reflex
signal (i.e., here the previous prediction error signal, et−1).
Over time, the correlation between the predictive and reflex
signals will adapt the synapse wt, connecting the predictive
signal with the learner neuron. Consequently, after a few trials
(depending on signal correlation) during the learning phase,
the robot speed will finally be driven by the predictive signal
instead. The learning algorithm applied has the property that
learning will stop when the change in the reflex signal is zero
[40]; i.e., when the moving speeds of the robot and the human
match. Since the learned weight is stored, the next time the
robot detects the same person using the visual face recognition
method (described above, Supplementary Figure 5), it will
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Fig. 7. Temporal error correlation-based neural learning circuit. The temporal
errors, calculated from the prediction error of the human position and the target
position and the previous prediction error, are fed into the circuit to calculate
a proper speed modulation factor Ft for adapting the robot speed to match
human walking speed. The weight (or adaptive speed gain) of the predictive
signal (error prediction, et) is adjusted according to the learning rule (Eq. 1)
to obtain Ft for robot speed adaptation. Using the predictive signal allows
the robot to adapt its speed in a stable and proactive way [58], [59].

retrieve the learned weight as an initial speed gain value which
can be continuously and quickly adapted on the fly during
guiding when the person changes speed. The TEC learning
rule for the weight change is given by:

∆wt = µet
∆et−1

∆t
, (1)

where µ is a learning rate which defines how fast a system
can learn. One could consider µ as the susceptibility for a
synaptic change, which in a biological agent would be defined
by its evolutionary development, which determines the agent’s
ability to learn a certain task. In this learning rule, only the
plastic synapse wt is permitted to change while the synapse of
the reflex input is set to a positive value, e.g., 1.0. Note that
wt can be considered as an adaptive speed gain in robot speed
adaptation. Formally the learning circuit produces its output
Ft driven by:

Ft = k(etwt + et−11.0), (2)

where k is an amplifier factor (e.g., 2.0). The neural learner
output Ft acts as a speed modulation factor which modulates
robot speed commands as:

vr = vr,navi − Ft, vl = vl,navi − Ft, (3)

where vr,l are the final speed commands to the right and left
robot motors. vr,l,navi are the original speed commands to the
right and left robot motors generated by the navigation control
(Fig. 4).

As previously mentioned, the changing weight wt only
stabilizes when a zero change occurs in the tracking error,
corresponding to the zero difference between the human
position and target position. This also implies that the relative
speed between the robot and human is zero, meaning the
speed of the learning system has been matched with the speed
of human tracking (Eq. 1). Figure 8 illustrates this effect. It

shows the numerical simulation results of the learning system
at different target (human walking) speeds (e.g., 1.0 m/s and
5 m/s). The system was initialized with its weight, speed,
and prediction error at zero. When the speeds of the system
and the target are different, the derivative of the reflex signal
∆et−1

∆t becomes a non-zero value. Therefore, the system starts
to update its weight according to the TEC learning rule. The
system is stable when the derivative is zero, meaning that the
system speed matches the target speed or the speed of the
tracking process.
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Fig. 8. Examples of the neural learning process. (a), (b) Numerical results of
the process (Eq. 1) at a target speed of 1.0 m/s. (c), (d) Results of the process
at a target speed of 5.0 m/s. The update frequency of the simulation was
set to 10 Hz. Note that the system speed has no overshoot in case of a low
target speed of 1.0 m/s because the control parameter (i.e., update frequency
(1/∆t) see Eq. 1) was properly adjusted. However, this frequency setup was
a bit low for a high target speed (e.g., 5.0 m/s) causing an overshoot in weight
and speed changes. However, after the overshoot, the system can converge to
a certain weight and reach the target speed. This shows that the stability of
the learning process.

IV. EXPERIMENTS AND RESULTS

In this section, we analyze and evaluate the performance of
the proactive robot control (an integration of the aforemen-
tioned modules (navigation control, visual human detection,
and neural learning), Fig. 3) for a proactive guidance strategy.
The strategy will allow the robot to autonomously navigate in
different environments while at the same time quickly adapting
its speed to that of the human target for smooth guidance.
Four main experiments were carried out. The first and second
experiments were performed in a 3D simulation environment
to analyze the performance of the proactive control using
different control parameters (i.e., adaptive versus fixed speed
gains) and different guidance scenarios (i.e., guiding along
a circular path, guiding with multiple turnings, guiding with
curve turning), respectively. The third experiments were con-
ducted to test the control of the SMOOTH robot (Fig. 2(a)) in
a relevant real-world environment with two different subjects
and paths. The final experiment demonstrated the functionality
of our control system in an operational real-world environment
(i.e., an elderly care center) with a real use case of guiding an
elderly resident. It is important to note that for safety in all real
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robot experiments6, the SMOOTH robot was operated under
several safety mechanisms. For example, the safety approved
laser scanner sensor we used for navigation control counts with
safety marking for collision detection. In case of emergency
or critical failure, the robot will be immediately stopped or
switched off by an emergency-stop-push button located at the
robot torso. The robot maximum speed was limited to 1.5
m/s. Additionally, the robot will be in a standby mode in case
of interruption or no change of the visual detection system.
Note that, the control system will be unable to update the
robot’s speed as fast as the target (human) moves during the
emergency or standby period. As a result, when the robot is
allowed to move again, there could be an overshoot at the
beginning (like the case shown in Fig. 8(c)). The overshoot
can be avoided by introducing time-based decay in Eq. 1 to
gradually reduce the adaptive gain over time.

A. Simulated Robot Experiments

In experiments I and II, the 3D simulation environment was
setup as follows. A human model was initially placed 3.5 m
behind the robot (Fig. 2(b)). The robot and human models
were assigned to follow certain paths. The human walked with
an average walking speed of 1.1 m/s. For our robot guidance
here, we let the human follow the robot from behind since in
our real use case at an elderly care center the walking path
there is narrow and caregivers suggested the leading-following
guiding strategy for safety instead of walking side by side.

1) Experiment I (adaptive vs fixed speed gains): Here,
we used a straight path to compare the performance of
the proactive control with an adaptive gain wt versus fixed
gains7 wconst. The performance was evaluated in terms of the
different distances between the robot and follower/human (i.e.,
robot-human distance). The adaptive gain was adjusted online
through the TEC learning rule (Eq. 1) while the two fixed
gains were predefined. They were set by scaling an optimal
gain value up and down (i.e., convergent adaptive gain) with
a certain factor (e.g., 3.0), as high wconst,h and low wconst,l

fixed gains, respectively.
Figure 9 shows the experimental results with a comparison

of an adaptive gain wt, a high gain of 6.0 wconst,h, and a
low gain of 0.67 wconst,l. Each case was repeated ten times
and the average and standard error values of the robot-human
distance are shown.

It can be observed that the adaptive gain with an initial value
of zero quickly converged to an optimal value of 2.0 within
20 seconds (Fig. 9(a)). After convergence, the robot-human
distance was also stably maintained at a target value of 1 m

6In all experiments with humans, a written informed consent form was
obtained from all participants. The consent form was adjusted continuously
during the project according to the results of robot technology development.
The experiments were performed in accordance with the ethical standards
laid down by the 1964 Declaration of Helsinki and we followed the relevant
basic principles of this declaration. Given the conditions explained above,
the experiments do not need explicit approval by the Danish Research Ethics
Committee, but the project was initially presented and discussed with the
Committee.

7It is important to note that the fixed gain control is in principle a
conventional robot reactive control method [60], [61], widely used in various
robot behavioral adaptation tasks [62], [63]. Thus we basically compare our
adaptive method with the conventional one.

(a) (b)

Fig. 9. Results of simulation experiments with adaptive and fixed gains. (a)
Different control parameters (adaptive speed gain, fixed high speed gain, and
fixed low speed gain). The adaptive gain was automatically adjusted to adapt
the robot speed online during guiding such that the robot-human distance
was maintained at around 1 m. (b) The robot-human distances of all the three
parameter setups.

(Fig. 9(b)). As previously mentioned, the target value with a
25% acceptable deviation range was considered by caregivers
at an elderly care center as a safety factor for guiding elderly
people as well as providing proper clearance when guiding
an elderly person with a wheeled walker. In contrast, use of
the low fixed gain results in a short robot-human distance of
around 0.5 m. This is too close and outside the safety range for
guiding. Use of the high fixed gain results in a large robot-
human distance of around 1.5 m. This is a bit too far and
inconvenient if human-robot conversation is employed [64].

The resulting too-close and too-far robot-human distances
when using fixed lower and higher speed gains are due to the
following reasons. A fixed high speed gain causes an abrupt
change in the robot speed abruptly (i.e., fast acceleration
and deceleration). Thus, the robot will perform a stop-and-
go motion pattern which can be observed by high ripples
of the robot-human distance value (blue line in Fig. 9(b)).
Consequently, the robot will maintain a far robot-human
distance. On the other hand, a fixed low speed gain causes
the robot to gently change speed. This makes the robot slower
to react to the human when approaching. This will lead to
a smoother guiding motion (low ripples in the robot-human
distance value, green line in Fig. 9(b)) and finally converge to
a close robot-human distance. Our online adaptation balances
this by automatically finding an optimal speed gain (orange
line in Fig. 9a) without knowing the human walking speed.
It predicts human walking speed based on the robot-human
distance over time and adapts its speed to achieve the best
distance accuracy (orange line in Fig. 9(b)) compared to the
fixed gains (i.e., conventional reactive robot control [60], [61]).

2) Experiment II (different guidance scenarios): Here, we
investigated the robot online speed adaptation under different
guidance scenarios, including guiding along a circular path,
guiding with multiple turnings, and guiding with curve turning.
Figure 10 shows the experimental results of the human and
robot speeds as well as robot-human distance during guiding
in each scenario. Each scenario was repeated ten times and
the average and standard error values of the robot speed and
the robot-human distance are shown.

For the circular path (Fig. 10(a)), we show the speed and
robot-human distance profiles from the beginning where the
robot speed was initially zero and the robot-human distance
was 3.5 m. The robot adapted its speed to the human walk-
ing speed within 15 s. During that period, the robot-human
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(a)
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(c)

i ii
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Fig. 10. Results of simulation experiments with different guidance scenarios.
(a) Guiding along a circular path. (b) Guiding with multiple turning. (c)
Guiding with curve turning. The robot and human speeds (i), as well as the
robot-human distance (ii) of each scenario, are shown. In case of multiple
turning and curve turning, the robot first decreases its speed when approaching
the curve while the human still walks at a normal speed. Therefore, the
relative speed decreases (robot speed - human speed), resulting in a decrease
of robot-human distance (i.e., the Euclidean distance with respect to rt, see
Fig. 2). Note that all these scenarios were simulated using common situations
which are likely to occur when implementing the robotic solution in the Ølby
elderly center in Køge, Denmark (our end user). For example, the guidance
scenario along a circular path is comparable to guiding an elderly resident to
walk (cardio exercise) inside the center. Guiding with multiple turning can be
considered as avoiding an obstacle on the path. Guiding with curve turning
is a typical situation for guiding an elderly resident from the living room to
the dining room (see our experiment IV).

distance profile also decreased. Afterward, it converged to the
target distance of 1.0 m and maintained that distance over
time. For guidance with multiple turning and curve turning
(Figs. 10(b) and (c)), we only show the snapshots of the
speed and robot-human distance profiles around the turning
periods. At turning points, the robot speed decreased and
then quickly increased to match the human walking speed.
At sharp turning, e.g., around 27 s as shown in Fig. 10(b), the
robot speed had an overshoot before returning to match the
human walking speed. The robot-human distance profile also
shows a similar pattern. The overshooting effect is because,
in the simulation, the human walked with a constant speed
while the robot decreased its speed during turning. Thus,
the robot-human distance quickly decreased (i.e., large error).
Consequently, the learning mechanism quickly sped the robot
through the adaptive speed gain to maintain the target robot-
human distance.

In all scenarios, the proactive control manages to adapt
the robot speed to match the human walking speed (i.e.,
1.1 m/s) and maintain the robot-human distance at around 1 m
constantly, except for the second and third scenarios where the
distance slightly decreased and increased due to the turning
effect described above. However, it is still in an acceptable
deviation range (i.e., 1 ± 0.25 m).

B. Real Robot Experiments

1) Experiment III (relevant real-world environment): We
performed two different guiding tests in the corridors inside a
building with two different trajectories and two human subjects
(subject 1 and subject 2). Each test was repeated three times to

explore the stability and adaptability of our proactive control
system in the real world. The first trajectory for subject 1 has
60 m length with narrow corridors and a 90-degrees sharp
curve (see Figs. 11(a) and (d)). The second trajectory for
subject 2 is 30 m in length with a 90-degrees wide curve
(see Supplementary Figure 6). The experimental result of
the first trajectory is shown in Figs. 11(a), (b), (c), and (d)
which present snapshots of robot guidance in the real-world
environment, change in an adaptive gain, change in robot-
human distance, and a map of the facility used for navigation
along with the robot position during the guidance experiment,
respectively. For the result of the second trajectory, we en-
courage readers to see Supplementary Figure 6.

(a)

(b)

(c)

(d)

i ii iii iv

5s 26s 30s

60s 67s 75s

(e)

Fig. 11. SMOOTH robot guiding a subject over a distance of 60 m. (a)
Snapshots of the robot guidance experiment (from left (i) to right (iv)). (b)
Adaptive gain, adapted according to the TEC learning rule. (c) Robot-human
distance. (d) Navigation map and robot trajectory. Note that real experimental
artifacts are considered as variability in human walking and path planning
for robot navigation. The green, yellow, and red colours in (b), (c), and (d)
describe the different regions in the guidance map. The numbers depicted in
(a) and (d) refer to the robot position during guiding. In this experiment,
the adaptive gain was adapted online to adjust the robot speed to match
the human walking speed of approximately 0.7 m/s. In the experiment, the
robot experienced different light levels in a range of approx. 50-850 lux. We
encourage readers to view a video of the experiment at www.manoonpong.
com/ProactiveControl/video1.mp4. (e) SMOOTH robot successfully guiding
an elderly resident at the Ølby elderly care center in Køge, Denmark. It
smoothly guided him without a stop-and-go pattern from the living room
to the dining room over a distance of 25 m. With SMOOTH proactive
guiding, the robot adapted its speed to the human target (approximately
0.2 m/s) successfully establishing smooth human-robot interaction in a real
case scenario. During the guiding task, the robot experienced different light
conditions in a range of approx. 30 - 600 lux. We encourage readers to view
the videos of this test at www.manoonpong.com/ProactiveControl/video2.mp4
and another test at www.manoonpong.com/ProactiveControl/video3.mp4.

www.manoonpong.com/ProactiveControl/video1.mp4
www.manoonpong.com/ProactiveControl/video1.mp4
www.manoonpong.com/ProactiveControl/video2.mp4
www.manoonpong.com/ProactiveControl/video3.mp4
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In both tests (as shown in Fig. 11(a) and Supplementary
Figure 6(a)), acceptable deviations occur from the target robot-
human distance. For guiding subject 1, the robot-human dis-
tance was around 1.15-1.25 m (Fig. 11(c)), while for subject 2,
the distance was around 0.8-1 m (Supplementary Figure 6(c)).
The deviations are basically due to several unknown factors,
including 1) complex interaction between different modules
(navigation control, visual human detection, and neural learn-
ing) at different update frequencies, 2) environmental friction
which was not included in the learning mechanism and the
navigation control, and 3) a human walking pattern consisting
of swing and stance phases. In the swing phase the human
speed decreases, causing an increase in the robot-human
distance while the opposite effect appears in the stance phase.
This can be improved by considering human and environ-
mental models. However, while not considering all unknown
factors, the robot successfully achieved 100% guidance from
the starting location to the end location over three runs for
each test. Furthermore, it managed to online adapt its speed to
match each human walking speed for smooth guidance without
a stop-and-go motion, and maintain its distance to each subject
within an acceptable range (i.e., 1 ± 0.25 m).

2) Experiment IV (operational real-world environment):
Here, we finally demonstrate the functionality of the proposed
proactive control system with a real end user at an elderly care
center in Køge, Denmark. The task represented in Fig. 11(e)
involves the guidance of an elderly resident with a trajectory of
25 m in length from the living room where the resident usually
rests, toward the dining room. The robot successfully achieved
the complex task (100% over three runs). In this task, it per-
formed multiple functions including autonomous navigation
through a real environment, obstacle avoidance, guidance, and
online speed adaptation to match the resident’s walking speed
of approximately 0.2 m/s. For a comparison of the robot speed
adaptation to individual users with different walking speeds,
we refer to www.manoonpong.com/ProactiveControl/video4.
mp4. This guiding use case has proven itself to be valuable
for elderly and welfare environments as discussed in [39].

V. DISCUSSION AND CONCLUSION

In this paper, we present a novel proactive control approach
for online individual user adaptation in a welfare robot guid-
ance scenario. The approach combines three main modules
for autonomous robot navigation, visual human detection,
and online robot speed adaptation. The results show that the
robot can navigate in different real-world environments and
learn to predict human walking speed based on a distance
function, such that it can autonomously adapt its speed to the
user. Consequently, it can smoothly guide the user without a
stop-and-go motion to the desired location while keeping its
distance from the user at the target safety level (1 ± 0.25 m).
Guiding without a stop-and-go motion (or without disturb-
ing/interrupting human motion while following the robot) can
lead to a higher degree of comfort8.

8For service robots, comfort is considered as the ability of the robot to
i) avoid disturbing the human with whom it shares the environment and ii)
create trust on the user [38], [65], [66], [67].

Our approach was also successfully tested in an elderly
facility where the robot smoothly interacted with an elderly
resident (i.e., adapting its speed) and guided him from the
living room to dining room over a distance of 25 m. If
it encounters an obstacle on its way, the robot considers
obstacle avoidance as the highest priority, automatically and
gradually decreasing its speed to avoid the obstacle during
guiding. Since the robot-human distance has been maintained
at the target distance, the user can adapt his walking speed
to the decreased robot speed accordingly. Once the obstacle
has been avoided, the robot can smoothly return to guide
the user at a normal speed (such a situation can be seen at
www.manoonpong.com/ProactiveControl/video3.mp4).

In particular, with the control approach, the proposed tempo-
ral error correlation-based neural learning does not require the
robot kinematic or environmental model for speed adaptation;
it is generic and can be applied to other robot guiding systems
[6], [7], [8], [9], [10] to achieve the same advanced feature.
The approach does not need multiple learning trials for predict-
ing human walking speed and adapting the robot speed. It can
be implemented directly on a real robot for continuous online
learning. This is different from conventional machine learning
or data-driven approaches which usually require experimental
data for training in simulation first before transferring the
trained model into a real robot [13], [20]. Since our neural
learning approach proactively adapts the robot speed to keep
an appropriate distance from its user, the approach can be also
applied in a reverse way to achieve smooth human following
of a mobile robot. Typical existing human following methods
relies on vision-based human tracking [68], [69], [70], [71]
with conventional robot control (like, closed-loop PID control
[71]). Thus, our method can enhance the human following
methods by using the visual information to predict human
position and online adapt a corresponding control gain as
shown here.

The proposed individual user adaptability provides ser-
vice robots with user-friendly, human-centered technology.
The integration of this approach into our robotic platform
SMOOTH increases the potential for exploring more complex
human-robot interactions with multiple adaptive functions [5].
While the proposed approach is shown to be effective for
individual user speed adaptation in a guidance scenario, several
adaptive functions still need to be implemented to complete
the guiding task to fully support elderly people. These adaptive
functions include 1) adaptive speech recognition [72] allowing
the robot to learn to recognize the speech of different users
and turn toward the user upon request (i.e., asking the robot
to guide), 2) adaptive smooth turning [73] and approaching
[74], [75] the user to begin guiding, and 3) adaptive human-
robot dialog [10], [76], [77] to keep motivating or encouraging
the user (elderly person) during guiding to walk to a target
location as well as to tell or warn the user to be aware of
an obstacle on their way. These additional functions and the
proposed guiding function in this study can be considered as
robot primitives. They can be adaptively combined through
action sequence learning methods [78], [79], [80] to obtain
a complete effective solution for elderly people in a welfare
robot guidance scenario.

www.manoonpong.com/ProactiveControl/video4.mp4
www.manoonpong.com/ProactiveControl/video4.mp4
www.manoonpong.com/ProactiveControl/video3.mp4
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As the control approach is a modular-based design, it is
flexible and offers the future possibility of integrating more
modules to implement adaptive speech recognition, smooth
turning and approaching, and human-robot dialog functions.
Thus, in future work, we will extend our control approach
according to the aforementioned adaptive modules and test the
robot extensively in facilities with multiple elderly residents
and more complex interactions.
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D. Shaikh, N. Krüger, and P. Manoonpong, “Towards crossmodal
learning for smooth multimodal attention orientation,” in International
Conference on Social Robotics. Springer, 2018, pp. 318–328.

[74] T. Schulz, P. Holthaus, F. Amirabdollahian, and K. L. Koay, “Humans’
perception of a robot moving using a slow in and slow out velocity
profile,” in 2019 14th ACM/IEEE International Conference on Human-
Robot Interaction (HRI). IEEE, 2019, pp. 594–595.

[75] F. Graf, Ç. Odabaşi, T. Jacobs, B. Graf, and T. Födisch, “Mobika-low-
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